TELECOMMUNICATIONS AND RADIO ENGINEERING - 2012 Vol. 71,
No 8
 

 

 

 

PROSPECTS FOR USING GUNN DIODES BASED ON GaN, AlN AND InN


I.P. Storozhenko & Yu.V. Arkusha
V. Karazin National University of Kharkiv,
4, Svoboda Sq., Kharkiv, 61077, Ukraine
Address all correspondence to I.P. Storozhenko E-mail: storozhenko_igor@mail.ru

Abstract
The transport properties of the idealized mode of limited space-charge accumulation and the resonance transit-time mode in n+–n–n+ and n+–n-–n–n+ GaN-, AlN-, InN-Gunn diodes have been studied. Promising, peculiarities and troubles in using nitride semiconductors in Gunn diodes are represented.
KEY WORDS: nitride semiconductor, Gunn diode, transport properties, frequency limit

References

  1. Mansour, N., Kim, K.W., and Littlejohn, M.A., (1995), Theoretical study of electron transport in gallium nitride, J. Appl. Phys. 77(6):2834–2836.
  2. Kolnik, J., Oguz-man, I.H., Brennan, K.F., et al., (1995), Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure, J. Appl. Phys., 78(2):1033–1038.
  3. Bhapkar, U.V. and Shur, M.S., (1997), Monte Carlo calculation of velocity-field characteristics of wurtzite GaN, J. Appl. Phys., 82(4):1649–1655.
  4. Krishnamurthy, S., Schilfgaarde, M., Sher, A., and Chen, A.-B., (1997), Bandstructure effect on high-field transport in GaN and GaAlN, Appl. Phys. Lett., 71(14):1999–2001.
  5. Albrecht, J.D., Wang, R.P., Ruden, P.P., et al., (1998), Electron transport characteristics of GaN for high temperature device modeling, J. Appl. Phys., 83(9):4777–4781.
  6. Dhar, S. and Ghosh, S., (1999), Low field electron mobility in GaN, J. Appl. Phys., 86(5):2668–2676.
  7. Kulikov, K.V. and Moskalyuk, V.A., (2008), High-frequency parameters of gallium nitride, SHF technology and devices, 2:48–52 (in Russian).
  8. Fabrication and characterization of planar Gunn diodes for Monolithic Microwave Integrated Circuits, www/URL: http://gorgia.no-ip.com/ phd/html/thesis/phd_html/simone-jbook.html.
  9. Farahmand, M., Garetto, C., Bellotti, E., et al., (2001), Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries, IEEE Trans. Electron Dev., 48(3):535–542.
  10. Tansley, T.L. and Foley, C.P., (1984), Electron mobility in indium nitride, Electron Lett.,
    20(25–26):1066–1068.
  11. Belotti, E., Doshi, B.K., Brennan, K.F., et al., (1999), Ensemble Monte Carlo study of electron transport in wurtzite InN, J. Appl. Phys., 85(2):916-923.
  12. O'Leary, S.K., Foutz, B.E., Shur, M.S., et al., (1998), Electron transport in wurtzite indium nitride,
    J. Appl. Phys., 83(4):826-829.
  13. Geerts, W., Mackenzie, J.D., Abernathy, C.R., et al., (1996), Electrical transport in p-GaN, n-InN and n-InGaN, Solid-State Electronics, 39(9):1289–1294.
  14. O'Leary, S.K., Foutz, B.E., Shur, M.S., et al., (1998), Monte Carlo simulation of electron transport in wurtzite aluminum nitride, Solid State Communications, 105(10):621–626.
  15. Alekseev, E. and Pavlidis, D., (2000), Large-signal microwave performance of GaN-based NDR diode oscillators, SolidStateElectronics, 44(6):941-947.
  16. Prokhorov, E.D. and and Beletskii, N.I., (1982), Semiconductor materials for devices with intervalley electron transport, Vyschaya shkola, Kharkov: 144 p. (in Russian).
  17. Storozhenko, I.P., (2003), Modelling the Gunn Diodes Based on Variband Semiconductors, Telecommunications and Radio Engineering, 59(1-2):100–110.
  18. Davydov, S.Yu., (2002), Estimation of parameters of the III-Nitride: BN, AlN, GaN, and InN, Fizika i tekhnika poluprovodnikov, 36(1):45–47 (in Russian).
  19. Electronic archive. New Semiconductor Materials. Characteristics and Properties: http://www.ioffe.ru/SVA/NSM.


pages 717-727

Back