TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 11
 

 

 

 

SOUTH AMERICAN THUNDERSTORMS AND THE SOUTH ATLANTIC GEOMAGNETIC ANOMALY



A.Ð. Nickolaenko1 & O.Â. Pechony2
1A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
22NASA Goddard Institute for Space Studies and Columbia University, New York, NY
Address all correspondence to A.Ð. Nickolaenko E-mail: sasha@ire.kharkov.ua

Abstract
Extensive information was accumulated on the global lightning activity by the space vehicles “Optical Transient Detector” (OTD) and “Lightning Imaging Sensor” (LIS), which is applied in different investigations. Precipitation of energetic particles from the Earth’s radiation belts causes numerous false lightning detections when satellites pass through the South Atlantic Anomaly (SAA), positioned nearby the east-south coast of South America. Aggressive selection (filtering) procedures were applied to the optical data resulting in unavoidable losses of true flashes along with radiation noise. Distinctions in interaction of the spaceborne equipment with the anomaly and different data filtering procedures resulted in remarkable deviations between OTD and LIS lightning distributions in this region. We compare optical data with DEMETER satellite observations and discuss possible causes of deviations among OTD and LIS data We also suggest that high lightning activity in the SAA region indicated by LIS might be a manifestation of a link between the space and terrestrial weather, and, possibly, a yet unexplored feedback mechanism between lightning discharges and cosmic particle precipitation.
KEY WORDS:South Atlantic Anomaly of geomagnetic field; global thunderstorm activity, optical detectors

References

  1. Reeve, N. and Toumi, R., (1999), Lightning activity as an indicator of climate change, Q. J. R. Meteorol. Soc. 125(6):893-903.
  2. Handbook on Geophysics, (1965), Nauka, Moscow: 571 p. (in Russian).
  3. Christian, H.J. and Latham, J., (1998), Satellite measurements of global lightning, Q. J. R. Meteorol Soc. 124(11):1771–1773. http://thunder.msfc.nasa.gov/otd; http://thunder.ms-fc.nasa.gov/lis.
  4. Christian, H.J., Blakeslee, R.J., Boccippio, D.J. et al., (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res. 108(D1):4005–4025. http://thunder.msfc.nasa.gov/otd.
  5. Boccippio, D.J., Koshak, W.J., and Blakeslee, R.J., (2002), Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability, J. Atmos. Oceanic Tech. 19(8):1318–1332. http://ghrc.msfc.nasa.gov.
  6. Parrot, M., (2006), Preface: Special issue of Planetary and Space Science «DEMETER», Planet. Space Sci. 54(5):411–412.
  7. Finke, U., (2008), Optical detection of lightning from space, Lightning: principles, instruments and applications, chapter 12, Springer: Netherlands.
  8. Toracinta, E., Cecil1, D.J., Zipser, E.J., and Nesbitt S.W., (2002), Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics, Monthly Weather Review. 130:802–824.
  9. Nickolaenko, A.P. and Hayakawa, M., (2002), Resonances in the Earth-ionosphere Cavity, Dordrecht-Boston-London: Kluwer Academic Publishers, – 380 p.
  10. Price, C., Pechony, O., and Greenberg, E., (2006), Schumann resonances in lightning research,
    J. Lightning Res. 1(1):1–15.
  11. Hayakawa, M., Sekiguchi, M., and Nickolaenko, A.P., (2005), Diurnal variations of electric activity of global thunderstorms deduced from OTD data, J. Atmos. Electr. 25(2):55–68.
  12. Nickolaenko, A.P., Pechony, O., and Price, C., (2006), Model variations of Schumann resonance based on OTD maps of the global lightning activity, J. Geophys. Res. 111:D23102.
  13. Pechony, O., Price, C., and Nickolaenko, A.P., (2007), Relative importance of the daynight asymmetry in Schumann resonance amplitude records, Radio Sci. 42:RS2S06.
  14. Pechony, O., (2007), Modeling and simulations of Schumann Resonance parameters observed at the Mitzpe Ramon field station, Ph. D. thesis, Tel-Aviv University, Israel.
  15. Yatsevich, E.I., Shvets, A.V., Nickolaenko, A.P., Rabinowicz, L.M., Belyaev, G.G., and
    Schekotov, A.Yu., (2005), Comparison of results of observations of Schumann resonance with the model of single thunderstorm model, Izvestija VUZov, Radiofizika. XLVIII(4):283-298 (in Russian)
  16. Nickolaenko, A.P., Yatsevich, E.I., Shvets, A.V., and Rabinowicz, L.M., (2006), Two component source model of Schumann resonance signal, J. Atmos. Electricity. 26(1):1–10.
  17. Yatsevich, E.I.,Nickolaenko, A.P., Pechony, O.B, (2008), Diurnal and Seasonal Variations in the Intensities and Peak Frequencies of the First Three Schumann-resonance Modes, Radiophysics and Quantum Electronics. LI(7):528–540.
  18. Nickolaenko, A.P., Rabinowicz, L.M., Shvets, A.V., and Schekotov, A.Yu., (2003), Detection of splitting of Schumann resonance eigenfrequencies, Telecommunications and Radio Engineering. 60(10-12):123-138.
  19. Nickolaenko, A.P., Rabinowicz, L.M., Shvets, A.V., and Schekotov, A.Yu., (2004), Polarization characteristics of low-frequency resonances in the Earth-ionosphere cavity, Izv. VUZov. Radiofizika. XLVII(4):267–291 (in Russian).
  20. Nickolaenko, A.P., Rabinowicz, L.M., Shvets, A.V., and Schekotov, A.Yu., (2004), Polarization characteristics of low-frequency resonances in the Earth-ionosphere cavity, Radiophysics and Quantum Electronics. 47(4):238–259.
  21. Nickolaenko, A.P. and Sentman, D.D., (2007), Line splitting in the Schumann resonance oscillations, Radio Sci. 42:RS2S13.
  22. Boccippio, D.J., Williams, E.R., Heckman, S.J. et al., (1995), Sprites, ELF transients, and positive ground strokes, Science. 269(5):1088–1091.
  23. Lyons, W., (1994), Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video, Geophys. Res. Lett. 21(10):875–878.
  24. Boccippio, D.J., Wong, C., Williams, E.R. et al., (1998), Global validation of single station Schumann resoance lightning location, J. Atmos. Solar – Terr. Phys. 60(5):701–712.
  25. Voss, H.D., Imhof, W.L., Mobilia, J. et al., (1984), Lightning-induced electron precipitation, Nature. 312(4):740–743.
  26. Dowden, R.L. and Adams, C.D.D., (1998), Phase and amplitude perturbations on subionospheric signals explained in terms of echoes from lightning-induced electron precipitation ionization patches, J. Geophys. Res. 93(A10):11,543–11,550.
  27. Inan, U.S., Wolf, T.G., and Carpenter, D.L., (1988), Geographic distribution of lightning-induced electron precipitation observed as VLF/LF perturbation events, J. Geophys. Res. 93(4):9841–9850.
  28. Johnson, M.P., Inan, U.S., and Lauben, D.S., (1999), Subionospheric VLF signatures of oblique (nonducted) whistler-induced precipitation, Geophys. Res. Lett. 26(4):3569–3573.
  29. Sauvaud, J.A., Maggiolo, R., Jacquey, C. et al., (2008), Radiation belt electron precipitation due to VLF transmitters: Satellite observations, Geophys. Res. Lett. 35:L09101.
  30. Inan, U.S., Piddyachiy, D., Peter, W.B. et al., (2007), DEMETER satellite observations of lightning-induced electron precipitation, Geophys. Res. Lett. 34:L07103.
  31. Inan, U.S., Bell, T.F., and Rodriguez, J.V., (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett. 18(4):705–709.
  32. Nikolaenko, A.P., (1976), On the heating of lower ionosphere electrons by electromagnetic radiation of returnable thunderstorm discharges, Geomagnetizm and Aeronomiya. 16(2):260–264 (in Russian).
  33. Kucherov, K.I. and Nikolaenko, A.P., (1979), On the heating of the electrons of lower ionosphere by horizontal thunderstorm discharges, Izv. VUZov. Radiofizika. XXII(7):884–896 (in Russian).
  34. Williams, E.R and Satori, G., (2004), Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Solar – Terr. Phys. 66(5):1213–1232.
  35. Gurevich, A.V., Milikh, G.M., and Roussel-Dupre, R.A., (1992), Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A165(2):463–468.
  36. Roussel-Dupre, R.A., Gurevich, A.V., Tunnell, T., and Milikh, G.M., (1994), Kinetic theory of runaway air breakdown, Phys. Rev. E49(3):2257–2271.
  37. Poirier, J., (1999), The south atlantic magnetic field anomaly and its effect on the calculated production of atmospheric neutrinos, ArXiv Astrophysics e-prints: Proc. of the 26th ICRC. Salt Lake City, 2:253.


pages 999-1012

Back