TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 9
 

 

 

 

EVOLUTION AND DYNAMICAL STABILIZATION OF MESOSCOPIC DISSIPATIVE STRUCTURES (ROTATING AUTOWAVES) WITH MULTIPLE TOPOLOGICAL CHARGES IN THREE-LEVEL EXCITABLE SYSTEMS



D.N. Makovetskii
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
E-mail: makov@ire.kharkov.ua

Abstract
The paper is devoted to computer modeling of evolution of mesoscopic dissipative structures (DS), which emerge in three-level excitable systems of the phaser type. Particular attention is given to the study of the rotating helical autowaves (RHA), including the stable RHA with multiple topological charges. The dimensional phenomena for these RSA have been revealed and investigated in details in the computer experiments. The hypersensitivity to the initial conditions is demonstrated for a multistable excitable system having spatial attractors in the form of RSA with various higher topological charges. The phenomenon of spatial coexistence of regular and irregular DS during slow transient processes in excitable medium has first been modeled (such a phenomenon observed before in real experiments on the ruby phaser).
KEY WORDS: mesoscopic dissipative structures, topological charge, phaser

References

  1. Weiss, C.O. and Larionova, Ye., (2007), Pattern Formation in Optical Resonators, Rep. Prog. Phys., 70:255-335.
  2. Vanag, V.K., (2004), Waves and dynamic structures in reaction-diffusion systems. The Belousov-Zhabotinckii reaction in inverted microemulsion, Uspehi fizicheskih nauk, 174(9):991-1010 (in Russian).
  3. Oya, T., Asai, T., Fukui, T., and Amemiya, Y., (2005), Reaction-Diffusion Systems Consisting of Single-Electron Oscillators, Int. J. Unconvential Computing., 1:177-194.
  4. Murray, J.D., (2002), Mathematical Biology, Springer, Berlin: 618 p.
  5. Fairley, P., (2004), The Unruly Power Grid, IEEE Spectrum, 41(8):16-21.
  6. Vasil’ev, V.A., Romanovskii, Yu.M., and Yakhno, V.G., (1987), Autowave Processes, Nauka, Moscow: 240 p. (in Russian).
  7. Loskutov, À.Yu. and Mikhailov, À.S., (1990), An introduction to synergy, Nauka, Moscow: 272 p. (in Russian).
  8. Field, R.J. and Burger, M., (1985), Oscillations and Traveling Waves in Chemical Systems, Wiley: New York, - 720 p.
  9. Bandman, Î.L., (2006), Cellular automata models of spatial dynamics, Sistemnaya informatika, Novosibirsk, 10:57-113 (in Russian).
  10. Makovetskii, D.N., (2001), Nonlinear dynamics of induced radiation of phonons in a microwave non-autonomous acoustic quantum oscillator at superlow-frequency pumping modulation, Pisma v Zhurnal Teoreticheskoi Fiziki. 27(12):57-64 (in Russian).
  11. Makovetskii, D.N., (2004), Resonance destabilization of microwave phonon stimulated emission in an acoustic quantum generator (phaser) at the periodical pumping modulation, Zhurnal Tehnicheskoi Fiziki, 74(2):83-91 (in Russian).
  12. Makovetskiy, S.D. and Makovetskii, D.N., (2005), A Computational Study of Rotating Spiral Waves and Spatio-Temporal Transient Chaos in a Deterministic Three-Level Active System, Cornell (USA): 38 p. (Preprint / Condensed Matter Repository. Cornell University; No cond-mat/0410460v2).
  13. Makovetskii, D.N., (2006), Nonstationary spatial structures, slow transient processes, and multistability under weak diffusion of excitations in the distributed nonequilibrium systems with active three-level centers, Telecommunications and Radio Engineering. 65(13):1227-1245.
  14. Makovetskiy, S.D., (2006), Numerical Modeling of Coexistence, Competition and Collapse of Rotating Spiral Waves in Three-Level Excitable Media with Discrete Active Centers and Absorbing Boundaries, Cornell (USA): 15 p. (Preprint / Condensed Matter Repository. Cornell University; ¹ cond-mat/0602345).
  15. Makovetskii, D.N., (2008), Competition of Self-Organized Rotating Helical Autowaves in Nonequilibrium Dissipative System with Three-Level Active Centers, Telecommunications and Radio Engineering, 67(4):353-377.
  16. Makovetskii, D.N., (2006), Slowing-Down of Transient Processes upon the Formation of the Power-Spectrum Fine Structure of a Microwave Phonon Laser (Phaser), Ukr. J. Phys., 51(5):449-459 (in Russian).
  17. Niñîlis, G. and Prigîgine, I., (1977), Self-Organization in NonEquilibrium Systems, New York: John Wiley & Sons.
  18. Atsarkin, V.À. and Rodak, M.I., (1978), Spin temperature in electron paramagnetic resonance, in: Problems on magnetic resonance, Nauka, Moscow: 187-205 (in Russian).
  19. Ganapolskii, E.M. and Makovetskii, D.N., (1977), Amplification and generation of coherent phonons in ruby under the conditions of population inversion of spin levels, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 72(1):203-217 (in Russian).
  20. Meltzer, R.S. and Rives, J.E., (1977), New High-Energy Monoenergetic Source for Nanosecond Photon Spectroscopy, Phys. Rev. Letters., 38(8):421-424.
  21. Fokker, P.A., Dijkhuis, J.I., and de Wijn, H.W., (1997), Stimulated Emission of Phonons in an Acoustical Cavity, Phys. Rev. B, 55(5):2925-2933.
  22. Makovetskii, D.N., (1984), Investigations of amplification and generation of the hypersound by paramagnetic centers in corundum at the population inversion spin levels, Abstract of thesis for a Doctor's degree, Kharkov: 22 p. (in Russian).
  23. Kevrekidis, P.G., Malomed, B.A., Zhigang Chen, and Frantzeskakis, D.J., (2004), Stable Higher-Order Vortices and Quasivortices in the Discrete Nonlinear Schrodinger Equation, Phys. Rev. E, 70(5):6612.
  24. Malinetskii, G.G. and Shakayeva, M.S., (1995), Simulation of oscillating chemical reactions at the surface, Zhurn. Fiz. Himii, 69(8):1523-1527 (in Russian).
  25. Zel’dovich, Ya.B. and Malomed B.A., Topological invariants and strings in distributed active dynamical systems, Soviet Physics Doklady, 25:721 (in Russian).
  26. Bogach, P.G.and Reshod'ko, L.V., (1979), Algorithmic and Automatic Models of the Activity of Smooth Muscles, Naukova Dumka, Kiev: 348 p. (in Russian).
  27. Greenberg, J.M. and Hastings, S.P., (1978), Spatial Patterns for Discrete Models of Diffusion in Excitable Media, SIAM J. Appl. Math., 34:515-523.
  28. Greenberg, J.M., Greene, C., and Hastings, S.P., (2005), Remarks on a 25 year old theorem on two-dimensional cellular automata, Int. J. Unconv. Computing, 1(4):399-402.
  29. Jensen, H.J., (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge etc.: Cambridge Univ. Press, - 153 p.
  30. Makovetskiy, S.D., (2005), A program for simulating space-time structures in three-level lasers, Proceedings of 9-th Intr. Forum ‘Radio electronics and young people of the 21th century’, (in Russian).
  31. Makovetskiy, S.D., (2006), A numerical simulation method of nonstationary processes in three-level excitable media and its code in Java, Proceedings of 10-th Intr. Forum ‘Radio electronics and young people of the 21th century’, (in Russian).
  32. Arnold, K., Gosling, J., and Holmes, D., (2005), The Java Programming Language, Prentice Hall,
    - 928 p.
  33. Kolmogorov, A.N., (1992), Selected Works of A.N. Kolmogorov: Volume III: Information Theory and The Theory of Algorithms, Kluwer Academic Publishers Group, - 304 p.
  34. Fermi, E., Pasta, J., and Ulam, S., (1965), Studies of the Nonlinear Problems (Part I), Collected Papers of Enrico Fermi, Chicago: Univ. of Chicago Press, pp. 978-1007.
  35. Knuth, D.E., (1997), Art of Computer Programming, Volume 2: Seminumerical Algorithms: 3-d edition, Addison-Wesley Professional, - 784 p.
  36. Gardner, M., (1971), On Cellular Automata Self-Reproduction, the Garden of Eden and the Game of Life, Sci. Amer., 224:112-117.
  37. Hagan, P.S., (1982), Spiral Waves in Reaction-Diffusion Equations, SIAM Journ. Appl. Math., 42(4):762-786.
  38. Kuramoto, Y. and Battogtokh, D., (2002), Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlin. Phenom. Complex Syst., 5(4):380-385.
  39. Abrams, D.M. and Strogatz, S.H., (2006), Chimera States in a Ring of Nonlocally Coupled Oscillators, Int. J. Bifurc. Chaos., 16(1):21.
  40. Makovetsky, E.D., Miloslavsky, V.K., and Ageev, L.A., (2005), Spontaneous Grating Formation in Thin Light-Sensitive AgCl-Ag Films at Linear P/S-Polarization of a Laser Beam, Journ. Optics A: Pure Appl. Optics., 7(7):324-332.
  41. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., (2001), Introduction to Algorithms: 2-nd edition. Cambridge (Massachusetts, USA) etc.: The MIT Press, - 984 p.


pages 819-842

Back