TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 4
 

 

 

 

PHOTONIC CRYSTALS AND MICRORESONATORS BASED ON THE ANISOTROPIC MESOPOROUS SILICON


V.I. Fesenko, I.A. Sukhoivanov, & S.N. Shulga
V. Karazin National University of Kharkov,
4, Svoboda Sq., Kharkiv, 61077, Ukraine
Kharkov National University of Radio Engineering and Electronics,
14, Lenin Ave, Kharkiv, 61166, Ukraine
Address all correspondence to V.I. Fesenko E-mail: innov@kture.kharkov.ua

Abstract
A physico-mathematical model describing one-dimensional photonic crystals and anisotropic mesoporous silicon-based microresonators is presented. The spectral characteristics of structures under study have been calculated using the e.m. field scalarization method in combination with the finite-difference method. The reflectance spectra for two orthogonal incident-plane wave polarizations are depicted.
KEY WORDS:microresonator, photoluminescence, porous silicon

References

  1. Uhler, A., (1956), Bell Syst. Tech. J. 35:333.
  2. Canham, L.T., (1990), Appl. Phys. Lett. 57:1046.
  3. Joannopoulos, J.D., Meade, R.D., and Winn, J.N., (1995), Photonic Crystals, Molding the Flow of Light. Princeton University Press.
  4. Samuoliene, N. and Satkovskis, E., (2005), Reflectivity modeling of all-porous-silicon distributed Bragg reflectors and Fabry-Perot microcavities, Nonlinear Analysis: Modeling and Control. 10(1):83-91.
  5. Zheng, J.P., Jiao, K.L., Shen, W.P. Anderson, W.A., and Kwok, H.S., (1992), Highly sensitive photodetector using porous silicon, Applied Physics Letters. 61:459-461.
  6. Chan, S., Horner, S.R., Fauchet, P.M., and Miller, B.L., (2001), Identification of gramnegative bacteria using nanoscale silicon microcavities, Journal of the Americal Chemical Society. 123:11797-11798.
  7. Kovalev, D., Polisski, G., Diener, J., Heckler, H., Timoshenko, V.Yu., and Koch, F., (2001), Strong In-plane Birefringence of Spatially Nanostructured Silicon, Applied Physics Letters. 78:916.
  8. Bruggeman, D.A.G., (1935), Berechnung Verschierener Physikalischer Konstanten von Heterogenen Substranzed, Ann. Phys., Leipzig, 24:636-679.
  9. Maxwell Garnett, J.C., (1904), Phil. Trans. R. Soc. Lond. 203:385-420.
  10. Looyenga, H., (1965), Physica. 31:401-406.
  11. Spanier, J.H. and Heman, I.P., (2000), Phys. Rev. B. 61(10):437.
  12. Shulga, S.N. and other, (2000), Calculation of the coefficients of reflection and transmission of a plane electromagnetic wave for an inhomogeneous gyrotropic layer by the finite-difference method, Journal of Communications Technology and Electronics. 45(6):662-669.
  13. Fedorov, M.I., (1958), Anisotropy medium optics, Izd. BSSR, Minsk: 380 p. (in Russian).
  14. Berreman, D.W., (1972), Optics in stratified and anisotropic media: 4x4-matrix formulation, J. Opt. Soc. Am. 62(4):502-510.
  15. Samarsky, A.A. and Gulin, A.V., (1989), Numerical methods, Nauka, Moscow: 432 p. (in Russian).
  16. Aktsipetrov, O.A., Dogov, T.V., Soboleva, I.V., and Fedyanin, A.A., (2005), Anisotropic photonic crystals and microcavities based on mesoporous silicon, Physica of the Solid State. 47(1):156-158.


pages 367-376

Back