TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 14
 

 

 

 

GRAZING INCIDENCE REFLECTIVITY OF HIGH-TC SUPERCONDUCTORS: MM WAVE TECHNIQUE OF CONDUCTIVITY MEASUREMENTS



A.I. Gubin, N.T. Cherpak, & A.A. Lavrinovich
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
Address all correspondence to A.I. Gubin E-mail: gubin@ire.kharkov.ua

Abstract
Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative materials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the electromagnetic wave at grazing incidence can be used to determine an absolute complex conductivity over a wide temperature and frequency range. As of now the experimental measurement setup was realized in millimeter wave range using waveguide phase bridge based approach. The conductivity of YBa2Cu3O7-? film was measured at temperatures higher than critical.

KEY WORDS:grazing incidence reflectivity, microwave conductivity, superconducting films

References

  1. Jenkins, A.P., Kale, K.S., and Dew-Hughes, D., (1996), Studies of High Temperature Superconductors, 17:179.
  2. Glover, R.E. and Tinkham, M., (1957), Conductivity of superconducting films for photon energies between 0.3 and 40 kTc, Phys. Rev. 108(2):243-256.
  3. Rugheimer, N.M., Lehoczky, A., and Briscoe, C.V., (1967), Microwave transmission- and reflection- coefficient ratios of thin superconducting films, Phys. Rev. 154(2):414-421.
  4. Lehkoczky, S.L. and Briscoe, C.V., (1971), Fluctuation effects in the ac conductivity of thin superconducting films at microwave frequencies, Phys. Rev. B. 4(11):3938-3950.
  5. Rubin, D.L., Green, R.K., Gruschus, J. et al., (1988), Observation of a narrow superconducting transition at 6 GHz in crystals of YBa2Cu3O7, Phys. Rev. B. 38(10):6538-6542.
  6. Ho, W., Hood, P.J., Kobrin, P.H. et al., (1988), Millimeter-wave complex-conductivity measurements of Bi-Ca-Sr-Cu-O superconducting thin films, Phys. Rev. B. 38(10):7029-7032.
  7. Kobrin, P.H., Ho, W., Hall, W. et al., (1990), Millimeter-wave complex conductivity of some epitaxial YBa2Cu3O7 films, Phys. Rev. B. 42(10):6259-6263.
  8. Van der Marel, D., Bauer, M., Brandt, E.H. et al., (1991), Infrared observation of two-fluid superconductivity in YBa2Cu3O7, Phys. Rev. B. 43(10):8606-8609.
  9. Booth, J.C., Wu, D.H., and Anlage, S.M., (1994), A Broadband Method for the Measurement of the Surface Impedance of Thin Films at Microwave Frequencies, Rev. Sci. Instrum. 65:2082.
  10. Tosoratti, N., Fastampa, R., Giura M. et al., (2000), Two techniques for the broadband measurement of surface impedance of high critical temperature superconducting thin films, Intern. J. Modern Phys. B. 14:2926.
  11. Klein, N., Dahne, U., Poppe, U. et al., (1992), Microwave surface resistance of epitaxial YBa2Cu3O7 thin films at 18.7 GHz measured by a dielectric resonator technique, J. Supercond. 5:195.
  12. Bhasin, K.B. and Warner, J.D., (1991), Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O7 thin films by microwave power transmission measurements, IEEE Trans. Magn. MAG-27(2):1284-1287.
  13. Waldram, J.R., Broun, D.M., Morgan, D.C. et al., (1999), Fluctuation effects in the microwave conductivity of cuprate superconductors, Phys. Rev. B. 59:1528-1537.
  14. Silva, E., Sarti, S., Fastampa, R., and Giura, M., (2001), Excess conductivity of overdoped Bi2Sr2CaCu2O8+x crystals well above Tc, Phys. Rev. B. 64(14):144508-144517.
  15. Silva, E., (2004), Frequency-dependent fluctuational conductivity above Tc in anisotropic superconductors: effects of a short wavelength cutoff, Eur. Phys. J. B. 37:277-289.
  16. Silva, E., Marcon, R., Sarti, S. et al., (2002), Microwave fluctuational conductivity in YBa2Cu3O7-d, Eur. Phys. J. B. 27:497-506.
  17. Wu, P.H. and Min, Q., (1992), Calculations of the microwave conductivity of high-Tc superconducting thin films from power transmission measurements, J. Appl. Phys. 71(11):5550-5553.
  18. Sonier, J.E., Pacradoumi, V., Sabok-Sayr, S.A. et al., (2009), Detection of the Unusual Magnetic Orders in the Pseudogap Region of a High-Temperature Superconducting YBa2Cu3O6.6 Crystal by Muon-Spin Relaxation, Phys. Rev. Lett. 103:167002.
  19. Somal, H.S., Feenstra, B.J., Schutzmann, J. et al., (1996), Grazing incidence infrared reflectivity of La1.85Sr0.15CuO4 and NbN, Phys. Rev. Lett. 76(9):1525-1528.
  20. Gubin, A.I., Lavrinovich, A.A., and Cherpak, N.T., (2001), Microwave reflection from HTS samples in waveguide E-structure, Tech. Phys. Lett. 55:336-337.
  21. Feenstra, B.J., (1997), Low Energy Electrodynamics of High Tc Superconductors: Proefschrift, University of Groningen, Groningen: 162 p.
  22. Cherpak, N.T., Gubin, A.I., and Lavrinovich, A.A., (2001), Microwave Reflectivity of HTS Film – Dielectric Substrate Structure at Arbitrary Incidence Angles, Telecommunications and Radio Engineering. 55(3):81-89.
  23. Gubin, A.I., Lavrinovich, A.A., and Cherpak, N.T., (2006), Grazing Incidence Reflectivity Technique of HTS and Related Materials Microwave Characterization, Proc. of 16-th Intern. Crimean Conf. “Microwave & Telecommunication Technology”, Sebastopol, pp 782-783 (in Russian).
  24. Hein, M., (1999), High-temperature Superconductor Thin Films at Microwave Frequencies, – 396 p.
  25. Cherpak, N., Barannik, A., and Filipov, Yu., (2003), Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasi-optical resonator, IEEE Trans. on Appl. Supercond. 13:3570-3573.
  26. Gubin, A.I., Lavrinovich, A.A., Cherpak, N.T., and Oganisian, K.V., (2001), Temperature dependence of the microwave conductivity of a YBCuO film in the normal state, Low Temp. Phys. 33:818-820.
  27. Belevtsev, B.I., Cherpak, N.T., Chukanova, I.N., et al., (2002), Direct-current transport properties of and microwave absorption in a bulk ceramic sample and a film of La0.5Sr0.5CoO3??: magnetic inhomogeneity effects, J. Phys.: Condens. Matter. 14:2591-2603.


pages 1277-1285

Back