TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 13
 

 

 

 

INFLUENCE OF DIELECTRIC RELAXATION ON THE CONTACTLESS RESISTIVITY MEASUREMENT OF SEMIINSULATING CdZnTe CRYSTALS



S.L. Abashin1, V.K. Komar2, D.P. Nalyvaiko2, S.V. Oleynick1, V.M. Puzikov2, M.A. Rom2, S.V. Sulima2, & O.N. Chugai1
1National Aerospace University (Kharkov Aviation Institute),
17, Chkalov St., Kharkiv, 61070, Ukraine
2 State Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine
60, Lenin Ave., Kharkiv, 61178, Ukraine
Address all correspondence S.V. Oleynick E-mail: oleynick@rbcmail.ru

Abstract
The difference in of the resistivity ρ measured in both stationary and alternating electric fields has been established for Ńd1–xZnxTe crystals (ő = 0.12…0.16). It is shown that this discrepancy is related to the energy dissipation of the alternating electric field, caused by the dielectric relaxation. To evaluate the contribution of the dielectric relaxation in ρ, it is suggested to use a relaxation oscillator frequency distribution function, which can be found from the frequency dependence of the permittivity of crystal.
KEY WORDS:resistivity, dissipation, dielectric relaxation

References

  1. Toney, J.E., Schlesinger, T.E., and James, R.B., (1999), Optimal bandgap variants of Cd1?xZnxTe for high-resolution X-ray and gamma-ray spectroscopy, Nucl. Instr. Meth. Phys. Res. A, 428(1):14-24.
  2. Kovtonyuk, N.F., (1970), Measuring parameters of semiconductor materials, Metalurgiya, Moscow: 428 p. (in Russian).
  3. Poplavko, Yu.Ě., (1980), Physics of dielectrics, Vyscha shkola, Kiev: 400 p. (in Russian).
  4. Antonis, P., Morton, E.J., and Menezes, T., (1996), Measuring the bulk resistivity of CdZnTe single crystal detectors using a contactless alternating electric field method, Nucl. Instr. Meth. Phys. Res. A, 380(1–2):157-159.
  5. Zhukovskii, P.V., Partyka, Ya., and Vengerek, P., (1999), Dielectric properties of compound semiconductors Cd1–xFexTe, Fizika i tekhika poluprovodnikov, 33(3):270-272 (in Russian).
  6. Zhukovskii, P.V., Partyka, Ya., and Vengerek, P., (2000), Dielectric properties of compound semiconductors Cd1–xFexSe, Fizika i tekhika poluprovodnikov, 34(10):1174-1177 (in Russian).
  7. Komar’, V.K., Migal’ V.P., Nalivaiko, D.P., and Chugai, O.N. (2001), Dielectric properties of melt-grown crystals CdxZn1–xTe, Inorganic materials, 37(5):1-4 (in Russian).
  8. Linjun Wang, Wenbin Sang, Weimin Shi et al., (2000), Electrical properties of contacts on P-type Cd0.8Zn0.2Te crystal surfaces, Nucl. Instr. Meth. Phys. Res. A, 448(3):581-585.
  9. Mitrokhin, V.I., Rembeza, S.I., Sviridov, V.V., and Yaroslavtsev, N.P., (1986), Dielectric relaxation related to deep levels in high-resistance semiconductors, Fizika i tekhika poluprovodnikov, 20(12):2230-2233 (in Russian).
  10. Frohlich, H., (1958), Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Clarendon Press.
  11. Ligachev, V.Ŕ., (1991), A new technique to calculate relaxation time spectra and its applications for studying a-Si:Í, Fizika i tekhnika poluprovodnikov, 33(11):3292-3301 (in Russian).
  12. Leschenko, Ě.Ŕ., (1992), Analysis of dielectric fuzzy spectra, Ukrainskii Fizicheskii Zhurnal, 37(6):898-904 (in Russian).
  13. Schlesinger, T.E., Toney, J.E., Yoon, H. et al., (2001), Cadmium zinc telluride and its use as nuclear radiation detector material, Materials Science and Engineering: R. 32(4–5):103-189.
  14. Zeveke, G.V., Ionkin, P.A., Netushyl, A.V., et al, (1975), The foundations of the circuit theory, Energiya, Moscow: 752 p. (in Russian).
  15. Oreshkin, P.T., (1977), Semiconductor physics and dielectrics, Vysshaya shkola, Moscow: 448 p., (in Russian).
  16. Yankovsky, M.Ya., (1969), A handbook of higher mathematics, Nauka, Moscow: 870 p. (in Russian).
  17. Ivanov, V.V., (1986), Calculation techniques by PC: A handbook, Naukova dumka, Kiev: 584 p. (in Russian).


pages 1203-1215

Back