TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 11
 

 

 

 

A TECHNIQUE FOR LIGHTNING LOCATION AND ESTIMATION OF THE LOWER IONOSPHERE PARAMETERS USING TWEEK-ATMOSPHERICS



A.V. Shvets & Yu.V. Gorishnya
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine

Address all correspondence to A.V. Shvets E-mail: a_shvets@ire.kharkov.ua

Abstract
A technique is described of distance finding to sources of radio pulses (lightning discharges) concurrently with the height of the Earth–ionosphere duct. The approach exploits wave interference between different waveguide modes in the amplitude spectra of night atmospherics (tweeks). By using this technique the source–observer distances were found ranging from 500 to 4 000 km for an ensemble of experimental waveforms recorded in the Atlantic and Indian oceans. The ionosphere height variations were obtained from experimental data being 5–6 km during the night and having 2–3 km changes on seasonal time scale.
KEY WORDS:lightning location, Earth-ionosphere waveguide, lower ionosphere monitoring

References

  1. Ohtsu, J., (1960), Numerical study of tweeks based on wave-guide mode theory, Proc. Res. Inst. Atmos. Nagoya Univ. 7:58–71.
  2. Cummer, S.A., (1997), Lightning and ionospheric remote sensing using VLF/ELF radio atmospherics, Ph. D. Dissertation, Department Electrical Engineering of Stanford University, Stanford, – 127 p.
  3. Cummer, S.A., Inan, U.S., and Bell, T.F., (1998), Ionospheric D-region remote sensing using VLF radio atmospherics, Radio Science. 33(6):1781–1792.
  4. Cummer, S.A., (2000), Modeling electromagnetic propagation in the Earth-ionosphere waveguide, IEEE Trans. Ant. Prop. 48(9):1420–1429.
  5. Hayakawa, M., Ohta, K., Shimakura, S., and Baba, K., (1995), Findings on VLF/ELF spherics,
    J. Atmos. Terr. Phys. 57(5):467–477.
  6. Yamashita, M. and Sao K., (1974), Some consideration of the polarization error in direction finding of atmospherics-I. Effect of the Earth's magnetic field, J. Atmos. Terr. Phys. 36:1623–1632.
  7. Yano, S., Ogawa, T., and Hagino, H., (1989), Wave-form analysis of tweek atmospherics, Res. Lett. Atmos. Electr. 9:31–42.
  8. Yano, S., Ogawa, T., and Hagino, H., (1991), Dispersion Characteristics and Waveform Analysis of Tweek Atmospherics, in: Environmental and Space Electromagnetics, Springer-Verlag, Tokyo: 227–236.
  9. Yedemsky, D.Ye., Ryabov, B.S., Shchokotov, A.Yu., and Yarotsky, V.S., (1992), Experimental investigation of the tweek field structure, Adv. Space Res. 12(6):251–254.
  10. Rafalsky, V., (1991), Resonance phenomena in transverse cross-section of the Earth–ionosphere cavity and its influence on excitation and propagation of radio waves, Diss. kand. phys.-math. sci. Kharkov: 112 p. (in Russian).
  11. Shvets, A., (1994), Experimental investigation of ELF-VLF radio propagation of atmospherics and dynamics of global thunderstorm activity, Diss. kand. phys.-math. sci. Kharkov: 153 pp. (in Russian).
  12. Mikhailova, G.A. and Kapustina, O.V., (1988), Fine frequency-time structure of ‘tweek’ type atmospherics and VLF diagnostics of the night ionosphere, Geomagnetism and Aeronomy. 28(6):1015–1018 (in Russian).  
  13. Yamashita, M., (1978), Propagation of tweek atmospherics, J. Atmos. Terr. Phys. 40:151–156.
  14. Hayakawa, M., Ohta, K., and Baba, K., (1995), Wave characteristics of tweek atmospherics deduced from the direction-finding measurement and theoretical interpretation, J. Geophys. Res. 99(D5):10733–10743.
  15. Shvets, A.V. and Hayakawa, M., (1998), Polarization effects for tweek propagation, J. Atmos. Solar-Terr. Phys. 60(4):461–469.
  16. Shvets, A., (1997), On polarization properties of tweeks, Radiophysics and Electronics, 2(2):101–106 (in Russian).
  17. Nickolaenko, A.P., Rafalsky, V.A., Shvets, A.V., and Hayakawa, M.A., (1994), A time domain direction finding technique for locating wide band atmospherics, J. Atmos. Electricity. 14(1):97–107.
  18. Rafalsky, V.A., Shvets, A.V., and Hayakawa, M.A., (1995), One-site distance-finding technique for locating lightning discharges, Atmos. Terr. Phys. 57(11):1255–1761.
  19. Brundell, J.B., Rodger, C.J., and Dowden, R.L., (2002), Validation of single station lightning location technique, Radio Sci. 37(4):1059–1067.
  20. Ogawa, T., Tanaka, Y., Miura, T., and Yasuhara, M., (1966), Observations of natural ELF and VLF electromagnetic noises by using the ball antennas, J. Geomagnet. Geoelectricity. 18(4):443–454.
  21. Shvets, A.V., Nickolaenko, A.P., and Hayakawa, M., (1997), Characteristics of Nearby Discharges Observed at Singapore, J. Atmos. Solar Terr. Phys. 59(14):1717–1726.
  22. Friedrich, M. and Torkar, K.M., (2001), FIRI: A semiempirical model of the lower ionosphere,
    J. Geophys. Res. 106(A10):21 409–21 418.
  23. Ivanov, I.V. and Kuznetsov, V.N., (1987), Some results of correction of the lower ionosphere model by using results experimental investigations, in: Propagation of km radio waves, Apatity: 5-7 (in Russian).


pages 1013-1026

Back