TELECOMMUNICATIONS AND RADIO ENGINEERING - 2011 Vol. 70,
No 1
 

 

 

 

MODEL OF DISTURBANCE OF GLOBAL ELECTROMAGNETIC RESONANCE DURING EXTRA-GALACTIC GAMMA RAY FLARE ON DECEMBER 27, 2004


A.P. Nickolaenko
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
E-mail: sasha@ire.kharkov.ua
M. Hayakawa
Advanced Wireless Communications Research Center and Research Station on Seismo Electromagnetics
The Univ. of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Abstract
The possible effect is discussed on the Schumann resonance records of the giant ? –ray flare from Sagittarius constellation (SGR 1806-20). We show that the dayside ionosphere modification is able to cause noticeable abrupt change in the power spectra global electromagnetic resonance. Spectral modifications gradually fade in time, so that usual spectra patterns are recovered in some time after the burst. A technique is proposed for measurements, which emphasizes the gamma burst effect.

KEY WORDS: the Schumann resonance, gamma-burst, the lower ionosphere

References

  1. Williams, E.R., Mushtak, V., and Nickolaenko, A.P., (2006), Distinguishing ionospheric models using Schumann resonance spectra, J. Geophys. Res. 111(16):16107.
  2. Ogawa, T. and Tanaka, Y., (1970), Q-factors of the Schumann resonance and solar activity, Contr. Geophys. Inst. Kyoto Univ. J. Geophys. Res. 10(1):21-28.
  3. Sao, K., Yamashita, M., and Tanahashi, S., (1973), Experimental investigations of Schumann resonance frequencies, J. Atmos. Terr. Phys. 35(9):2047-2053.
  4. Roldugin, V.C., Maltsev, Y.P., Vasiljev, A.N. et al., (2003), Changes of Schumann resonance parameters during the solar proton event of 14 July 2000, J. Geophys. Res. 108(A3):1103.
  5. Roldugin, V.C., Maltsev, Y.P., Vasiljev, A.N., and Vashenyuk, E.V., (1999), Changes of the first Schumann resonance frequency during relativistic solar proton precipitation in the 6 November 1997 event, Ann. Geophys. 17(4):1293-1297.
  6. Roldugin, V.C., Maltsev, Y.P., Petrova, G.A., and Vasiljev, A.N., (2001), Decrease of the first Schumann resonance frequency during solar proton events, J. Geophys. Res. 106(26):18,555–18,562.
  7. Fullekrug. M., (2000), Dispersion relation for spherical electromagnetic resonances in the atmosphere, Physics Letters A. 275(1):80-89.
  8. Shvets, A.V., Nickolaenko, A.P., Belyaev, G.G., and Schekotov, A.Yu., (2005), Analysis Schumann Resonance Parameter Variations Associated with Solar Proton Events, Telecommunications and Radio Engineering. 64(9):771-791.
  9. Rabinowicz, L.M., Shvets, A.V., and Nickolaenko, A.P., (2008), Polar non-uniformity of ionosphere related to solar proton events, Telecommunications and Radio Engineering, 67(5):413-435.
  10. Hayakawa, M., Ohta, K., Nickolaenko, A.P., and Ando, Y., (2005), Anomalous effect in Schumann resonance phenomena observed in Japan associated with the Chi-Chi earthquake in Taiwan, Annales Geophysicae. 23(6):1335-1346.
  11. Price, C. and Mushtak, V., (2001), The impact of the August 27, 1998, g-ray burst on the Schumann resonances, J. Atmos. Solar-Terr. Phys. 63(5):1043-1047.
  12. Inan, U.S., Lehtinen, N.G., Lev-Tov, S.J. et al., (1999), Ionization of the lower ionosphere by g-rays from a magnetar: Detection of a low energy (3–10 keV) component, Geophys. Res. Lett. 42(8):3357–3366.
  13. Inan, U.S., Lehtinen, N.G., Moore, R.C., at al., (2007), Massive disturbance of the daytime lower ionosphere by the giant g-ray flare from magnetar SGR 1806-20, Geophys. Res. Lett. 34(8):L08103.
  14. Hurley, K., (2005), An exceptionally bright flare from SGR 1806–20 and the origins of short-duration
    g-ray bursts, Nature. 434(5):1098-1103.
  15. Rabinowicz, L.M., (1986), On the impact of the day-night non-uniformity of the ELF fields, Radiofizika, Izv. VUZov. 29(4):635-644 (in Russian).
  16. Nickolaenko, A.P., (1986), Scattering of the ELF radio waves by the global non-uniformities of the Earth-ionosphere cavity, Izv. VUZov. Radiofizika. 29(1):33-40 (in Russian).
  17. Nickolaenko, A.P. and Hayakawa, M., (2002), Resonances in the Earth-ionosphere Cavity, Dordrecht-Boston-London, Kluwer Academic Publishers.
  18. Otsuyama, T., Sakuma, D., and Hayakawa, M., (2003), FDTD analysis of ELF wave propagation and Schumann resonances for a subionospheric waveguide model, Radio Sci. 38(6):1103.
  19. Pechony, O., Price, C., and Nickolaenko, A.P., (2007), Relative importance of the day-night asymmetry in Schumann resonance amplitude records, Radio Sci. 42(6):RS2S06.
  20. Yang, H., and Pasko, V.P., (2006), Three-dimensional finite difference time domain modeling of the diurnal and seasonal variations in Schumann resonance parameters, Radio Sci. 41(2):RS2S14.
  21. Nickolaenko, A.P., Pechony, O., and Price, C., (2006), Model variations of Schumann resonance based on OTD maps of the global lightning activity, J. Geophys. Res. 111(2):D23102.
  22. Madden, T. and Thompson, W., (1965), Low-frequency electromagnetic oscillations of the Earth-ionosphere cavity, Rev. Geophys. 3(20):211-265.
  23. Hayakawa, M., Sekiguchi, M., and Nickolaenko, A.P., (2005), Diurnal variations of electric activity of global thunderstorms deduced from OTD data, J. Atmos. Electricity. 25(2):55-68.


pages 73-85

Back