TELECOMMUNICATIONS AND RADIO ENGINEERING - 2010 Vol. 69,
No 7
 

 

 

 

Physical Modeling of Electromagnetic Scattering in the Terahertz Band Quasi-Optical Directional Structures


V.K. Kiseliov
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
Address all correspondence to V.K. Kiseliov E-mail: kiseliov@ire.kharkov.ua

Abstract
The paper is devoted to elaboration of the theoretical and experimental basis, methods and recommendations aimed at the development of a new trend in the experimental radio physics – physical quasi-optical waveguide modeling (QWM) of the processes of electromagnetic scattering in the near millimeter (NMM) and submillimeter (SMM) wavelength ranges. The methods of experimental research of the electromagnetic scattering processes in the quasi-optical (QO) directional structures of a «hollow dielectric waveguide» (HDW) class have been developed and generalized. The basis for development of the radio measurement facilities used for physical electromagnetic modeling (EMM) of the object’s scattering characteristics in the NMM and SMM wavelength bands has been elaborated.

KEY WORDS: terahertz range, quasioptics, quasioptical waveguide modeling method, microcompact scattering range



References
  1. Sinclair, G., (1948), Theory of Models of Electromagnetic Systems, Proc. of the IRE. 36(11):1364-1370.
  2. Stratton J.A., (1941), Electromagnetic Theory, New York, NY: McGraw-Hill Book Company, Inc.
  3. Kuleshov, Ye.Ì., Yanovsky, Ì.S., Litvinov, D.D. et al., (1974), Quasi-optical mm- and submm-wave band radio measuring devices, All-Union Symposium on Propagation of MM and SUBMM wave in the Atmosphere of the Earth and the Planets, Moscow – Gorky, pp. 124-127 (in Russian).
  4. Usikov, À.Ya. (ed.), Êànner, E.À., Òruten, I.D. et al., (1986), Electronics and radio physics of mm- and submm-band radio waves, Naukova dumka, Kiev: 368 p. (in Russian).
  5. Bezborodov, V.I., Êàmenev, Yu.Ye., Kiseliov, V.K. et al., (1994), Quasi-optical and waveguide mm- and submm-wave band radio measuring equipment, Intern. Symposium on «Physics and Engineering of MM and SUBMM Waves», Kharkiv, pp. 635-637.
  6. Akhiezer, À.N., Goroshko, À.I., Ênyazkov, B.N., et al., (1972), Cert. of Authorship No. 302054 USSR, Submillimeter wave band dielectric beamguide, Discoveries. Inventions, 8: 235 (in Russian).
  7. Àyvazyan, Ì.Ts., Kazantsev, Yu.N., and Kharlashkin, Î.À., (1980), Set of waveguide elements on the basis of rectangular metal dielectric waveguide for the short-wave domain of millimeter-wave band, 3rd All-Union Symposium on MM and SUBMM waves: Gorky, pp. 53-54 (in Russian).
  8. Bezborodov, V.I., Kiseliov, V.K., Ênyazkov, B.N. et al., (1992), Radio measuring equipment and devices on the basis of metal dielectric waveguide, Interdept. Sci-Techn. Conf. «Equipment, devices and propagation of millimeter and submillimeter waves», Kharkiv, p. 88.
  9. Bezborodov, V.I., Kiseliov, V.K., Ênyazkov, B.N. et al., (1992), Quasi-optical radio measuring equipment in short-wave domain of millimeter- and submillimeter-wave bands, Proc. of Intern. Sci-Techn. Conf. «Actual Problems of Electronic Equipment Manufacturing» (APEEM-92), Novosibirsk, pp. 49-53 (in Russian).
  10. Bezborodov, V.I., Kiseliov, V.K., Kuleshov, Ye.M., and Yanovsky, M.S., (2009), Quasi-optical radio measuring devices for shorter-millimeter and submillimeter wavelengths, based on the metal-dielectric waveguide of square cross-section, Telecommunications and Radio Engineering. 68(5):371-383.
  11. Kazantsev, Yu.N., (1970), Electromagnetic waves in rectangular cross-section dielectric channels, Radiotekhnika i elektronika. 15(6):1140-1145 (in Russian).
  12. Kazantsev, Yu.N. and Kharlashkin, Î.À., (1971), Broad low-loss rectangular cross-section waveguides, Radiotekhnika i elektronika. 16(6):1063-1065 (in Russian).
  13. Maizels, Ye.N. and Òorgovanov, V.À., (1972), Measurement of scattering characteristics of radar targets, Radio i svyaz, Moscow: 232 p. (in Russian).
  14. Currie, N.C., (ed.) (1989), Radar reflectivity measurement: techniques and applications, Norwood: Artech House, Inc., – 754 p.
  15. Ìitsmakher, Ì.Yu. and Òorgovanov, V.À., (1982), Microwave anechoic chambers, Radio i svyaz, Moscow: 128 p. (in Russian).
  16. Ìitsmakher, Ì.Yu., (1980), Quality of present-day anechoic chambers and radio absorbing materials, Àntennas. 28: 147-164.
  17. Emerson, W.H., (1973), Electromagnetic Wave Absorbers and Anechoic Chambers Through the Years, IEEE Trans. AP-21(4):484-490.
  18. Special Issue on Radar Reflectivity, (1965) IEEE Proc. 53(8).
  19. Special Issue on Radar Cross Sections of Complex Objects,  (1989)  IEEE Proc. 77(5).
  20. Varganov, Ì.Ye., Zinovyev, Yu.S., Àstanin, L.Yu. et al., (1985), Radar characteristics of aircraft, Radio i svyaz, Moscow: 236 p. (in Russian).
  21. Voskresensky, D.I., Voronin, Ye.N., Êîmarov, V.Ì., and Nechayev, Ye.Ye., (1984), Measuring of external characteristics of antennas considering the distorting factors (review), Izv. VUZov. Radio Electronics. 27(2):4-19 (in Russian).
  22. Beskyd, P.P., Vinogradov, Ye.Ì.,Vinokurov, V.I. et al., (1981), Radio equipment modeling and testing, Sudostroyeniye, Leningrad: 304 p. (in Russian).
  23. System Measurements in Anechoic Chambers, (1980) Microwave Journal. 23(2):79.
  24. An Anechoic Chamber for Advanced Research, (1979), Microwave Journal. 22(12):19.
  25. Central Target Simulator Facility, (1979), Microwave Journal. 22(2):19.
  26. Microwave Anechoic Chamber Kits, (1972), Microwave Journal. 15(7):54.
  27. Roll-out chamber checks small antennas from 2-18 GHz, (1975), Microwaves. 11(12):64.
  28. Small, high power UHF anechoic shielded chamber, (1970), Frequency Technology. 8(6):35.
  29. Àpletalin, V.N., Kazantsev, Yu.N., and Solosin, V.S., (2005), Cm- and mm-wave band reflectometers on the basis of hollow metal dielectric waveguides, Radiotekhnika. 8:40-44 (in Russian).
  30. Àpletalin, V.N., Kazantsev, Yu.N., Zubov, À.S., Solosin, V.S., (1998), Polarization reflectometer, Radiotekhnika. 12:48-51 (in Russian).
  31. Sweetman, B., (1985), Stealth, Interavia. 11:1217-1219.
  32. Walton, E.K. and Young, J.D., (1984), The Ohio State University compact radar cross-section measurement range, IEEE Trans. Antennas and Propagation. 32(11):1218-1223.
  33. Weinstein, L.A., (1969), Open resonators and open waveguides, P. Beckman, Tr. Boulder, Colorado: Golem Press.
  34. Sidorenko, À.I., (1969), Application of open resonators for measuring of the efficient scattering surface of the objects, Radiotekhnika i elektronika. 14(5):766-770 (in Russian).
  35. Cullen, A.L. and Kumar, A., (1970), The absolute determination of extinction cross-sections by the use of an open resonator, Proc. Roy. Soc. (London). A.315:217-230.
  36. Cram, L.A., (1979), Development of model radar systems between 30 and 900 GHz, The Radio and Electronic Engineer. 49(7/8):381-388.
  37. Waldman, J., Fatterman, H. R., Duffy, P. E., et. al., (1979), Submillimeter Model Measurements and their Application to Millimeter Radar Systems, Fourth Int. Conf. on Infrared and Millimeter Waves and Their Applications. Miami Beach, USA, pp. 49-50.
  38. Waldman, J., Fatterman, H. R., Goodyue, W.D. et. al., (1980), Submillimeter modeling of millimeter radar systems, Proc. Soc. Photo-Opt. Instrum. Eng. 259:152-157.
  39. Bathe, S.E., Prewer, B. E., and Villis, G., (1987), Recent advances in the use of submillimetre wave techniques to obtain back scatter information at the UK National Scale Modeling Centre, Proc. 17th European Microwave Conf. Rome, pp. 979-990.
  40. Olver, A.D., (1989), Millimetrewave systems – past, present and future, IEE Proc. 136(1):35-52.
  41. Coulumbe, M.J., Horgan, T., Waldman, J. et. al., (1996), A 160 GHz polarimetric Compact Range for Scale Model RCS Measurements, 18th Antenna Measurement Technical Associating Meeting & Symposium (AMTA’96). Boston, USA, pp. 239-244.
  42. Application of lasers for modeling of operation of mm-wave band radars, (1981), Foreign Radio Electronics. 17:10-11.
  43. Bohren, C.F. and Huffman, D.R., (1986), Absorption and Scattering of Light by Small Particles, New York : John Wiley and Sons.
  44. Greenberg, J.M., Pedersen, N.E., and Pedersen, J.C., (1961), Microwave analog to the scattering of light by nonspherical particles, J. Appl.Phys. 32:233-242.
  45. Volkhin, I.L., Êîrotayev, N.N., Ìeiklyar, P.V., and Schwartz, V.Ì., (1994), Investigation of light scattering by a photographic layer using the method of modeling upon microwaves, Trans. Perm University. Physics. 2:203-210 (in Russian).
  46. Volkhin, I.L. and Êîrotayev, N.N., (2000), Ìîdeling of light propagation through a dielectric particle with the help of microwaves, 10-th International Crimean Conference «Microwaves and Telecommunication Technologies» (CriMiCo’2000), Sevastopol, pp. 525-526.
  47. Van de Hulst, H.C., (1957), Light Scattering by Small Particles, New York: Wiley.
  48. Rosenberg, V.I., (1972), Scattering and attenuation of electromagnetic oscillation by atmospheric particles. Gidrometeoizdat, Leningrad: 348 p. (in Russian).
  49. Kiseliov, V.K., (1994), Quasi-Optical Installation and Technique for the Measurements of Backward Scattering Characteristics of Radar Targets Models in the Submillimeter Radio Wave Range, The Third International Conf. on Millimeter Wave and Far-Infrared Science and Technology (ICMWFST'94). Guangzhou, China, pp. 504-505.
  50. Kiseliov, V.K. and Kushta, T.M., (1997), Principles of a New Compact Range Technique for the Submillimeter Wave Region, Proc. 19th Meeting & Symposium AMTA'97. Boston, Massachusetts, USA, pp. 524-528.
  51. Kiseliov, V.K., Kushta, T.M., and Nesterov, P.K., (1998), Investigation of a New Quasioptical Waveguide Modeling Method for Backward and Forward Scattering Study in Millimeter and Submillimeter Wave Bands, Proc. 20th Meeting & Symposium AMTA'98. Montreal, Canada, pp. 78-83.
  52. Kiseliov, V.K., Kushta, T.M., and Nesterov, P.K., (2001), Quasi-Optical Waveguide Modeling Method and Micro-Compact Scattering Range for the Millimeter and Submillimeter Wave Bands, IEEE Transactions on Antennas & Propagations. AP-49(5):784-792.
  53. Kiseliov, V.K., (1997), A Hollow Dielectric Waveguide as a Field Former in Quasioptical Waveguide Modeling of Electromagnetic Scattering, Telecommunications and Radio Engineering. 51( 2-3):183-190.
  54. Kiseliov, V.K., (1995), Quasi-optical waveguide method for investigation of scattering characteristics of physical objects within the submillimeter range of electromagnetic waves, Reports of the National Academy of Sciences of Ukraine. 11:60-62 (in Ukrainian).
  55. Kiseliov, V.K. and Kushta, T.M., (1995), Method for Radar Cross Section Measurements in Millimeter and Submillimeter Wave Regions, International Journal of Infrared and Millimeter Waves. 16(6):1159-1165.
  56. ʳseliov, V.Ê. and Êushta, Ò.Ì., (2000), Patent No. 20755 Ukraine, SPK G 01 R 29/00; G 01 S 13/00. Method for measuring of scattering characteristics of the object within the submillimeter band of radio waves and the device for performance thereof, 4:9 (in Russian).
  57. Marcatili, E.A. and Schmeltzer, R.A., (1964), Hollow metallic and dielectric waveguides for long distance optical transmission and lasers, Bell System Tech. Journal. 43(7):1783-1809.
  58. Kazantsev, Yu.N., (1973), Electrodynamics of broad gas dielectric and metal dielectric waveguides, Thesis for a degree of Doctor of Physics and Mathematics. Moscow: 343 p. (in Russian).
  59. Marcatili, E.A., (1966), Light transmission in multiple dielectric (gaseous and solid) guide, Bell System Tech. Journal. 45(1):97.
  60. Ìålekhin, V.N. and Ìànenkov, À.B., (1968), Dielectric tubes as low-loss waveguides, Journ. Techn. Phys. 38(12):2113-2115 (in Russian).
  61. Marcatili, E.A., (1969), Dielectric rectangular waveguide and directional coupler for integral optics, Bell System Tech. Journal. 47:2071-2102.
  62. Ìålekhin, V.N. and Ìànenkov, À.B., (1969), Dielectric tubes – open waveguides with low losses and sparse spectrum, High-Power Electronics. 6:161-178 (in Russian).
  63. Vershinina, L.N., Kazantsev, Yu.N., Meriakri, V.V., and Shevchenko, V.V., (1969), Submillimetre, quasi-optical transmission lines, European Microwave Conference Handbook. Kent, p. 174.
  64. Kazantsev, Yu.N., (1970), Attenuation of eigen waves in the broad waveguide with finite-thickness dielectric coating, Radiotekhnika i elektronika. 15(1):207 (in Russian).
  65. Kazantsev, Yu.N., (1970), Electromagnetic waves in dielectric rectangular channels, Radiotekhnika i elektronika. 15(6):1140-1145 (in Russian).
  66. Kazantsev, Yu.N. and Kharlashkin, O.À., (1971), Broad rectangular waveguides with low losses, Radiotekhnika i elektronika. 16(6):1063-1065 (in Russian).
  67. Goroshko, À.I. and Kuleshov, Ye.Ì., (1972), Investigation of millimeter and submillimeter wavelength bands hollow dielectric beamguide, Radiotekhnika. 21:215-219 (in Russian).
  68. Kazantsev, Yu.N., and Udalov, V.V., (1972), Òubular orifice waveguide, Izv. VUZov. Radio Physics. 15(10):1561-1566 (in Russian).
  69. Kazantsev, Yu.N. and Kharlashkin, Î.À., (1978), Rectangular waveguides of the type «hollow dielectric channel», Radiotekhnika i elektronika. 23(10):2060-2066 (in Russian).
  70. Kazantsev, Yu.N. and Kharlashkin, Î.À., (1984), Cylindrical waveguides of the type «hollow dielectric channel», Radiotekhnika i elektronika. 29(8):1441-1450 (in Russian).
  71. Davidovich, Ì.V., (1994), Improvement of self-filtration of modes in hollow waveguides with multilayer magnetic dielectric shell, Radiotekhnika i elektronika. 39(1):53-61 (in Russian).
  72. Snitzer, E., (1961), Cylindrical Dielectric Waveguide Modes, J. Opt. Soc. Am. 51(5):491-498.
  73. Degnan, J.J., (1973), Waveguide laser mode patterns in the near and far field, Applied Optics. 12(5):1026-1030.
  74. Dragone, C., (1981), High-frequency behavior of waveguides with finite surface impedances, Bell System Tech. Journal. 60(1):89-115.
  75. Dragone, C., (1980), Attenuation and radiation characteristics of the HE11-mode, IEEE Trans. Microwave Theory Tech. MTT-28(7):704-710.
  76. Kiseliov, V.K. and Kushta, T.M., (1997), A Spherical Scatterer inside a Circular Hollow Dielectric Waveguide, International Journal of Infrared and Millimeter Waves. 18(1):151-163.
  77. Kiseliov, V.K., (1999), Analysis and Optimization of a Quasioptical Waveguide-based Microcompact Testing Range for Submillimeter Waves, Telecommunications and Radio Engineering. 53(3): 57-70.
  78. Kiseliov, V.K., (2002), Physical modeling of electromagnetic scattering in quasi-optical directional structures, Thesis for a degree of Doctor of Physics and Mathematics. Kharkiv: 316 p. (in Russian).
  79. Kiseliov, V.K., (1994), Quasi-optical device for measuring of characteristics of backscattering of the radar object models within the submillimeter band of radio waves, Intern. Sci-Tech. Conf. «Modern Radar», Êyiv, pp. 192-193 (in Russian).
  80. Ross, R.A., (1966), Radar Cross Section of Rectangular Flat Plates as a Function of Aspect Angle, IEEE Transactions on Antennas & Propagations. AP-14(5):329-335.
  81. Ross, R.A., (2006), Backscattering from Square Plates Illuminated With Vertical Polarization, IEEE Transactions on Antennas & Propagations. AP-54(1):272-275.
  82. Kiseliov, V.K., Kiseliov, A.V., Klimko, V.A. et al. (2002), Quasi-Optical Waveguide Modeling Method for the Measurements of Scattering Matrix Elements in the Near-Millimeter and Submillimeter Wave Bands, Telecommunications and Radio Engineering. 58 (1-2): 75-87.
  83. Êiseliov, V.Ê., Ìizrakhi, S.V., and Nesterov, P.Ê., (2007), Quasi-optical microcompact scattering range for modeling of polarization characteristics of scattering within the near mm-wave band, Radiotekhnika. 150:69-74 (in Russian).
  84. Huynen, J.R., (1965), Measurement of the Target Scattering Matrix, Proc. IEEE. 53(8):936-946.
  85. http://www.ire.kharkov.ua/CJU THZ QO-InetPage/index.htm.
  86. www.elmika.com.
  87. http://www.ire.kharkov.ua/depquasi/quasiuk.html.
  88. Riegger S. and Wiesbeck, W., (1989), Wide-Band Polarimetry and Complex Radar Cross Section Signatures, Proc. IEEE. 77(5): 649-658.


pages 575-607

Back