TELECOMMUNICATIONS AND RADIO ENGINEERING - 2010 Vol. 69,
No 6
 

 

 

 

Instrumental Errors of the Interferometric Method for Troposphere Refraction Investigations Along the Geostationary Satellite-Earth Radio Path


D.D. Khalameyda
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
Address all correspondence to D.D. Khalameyda E-mail: hdd78@mail.ru

Abstract
The possibility is analyzed of using an interferometer which receives radio signals from a geostationary satellite for estimating, within an exponential troposphere model, the path-integrated gradient of the tropospheric refraction index. The factors influencing the accuracy of angle-of-arrival measurements are discussed and evaluated (including receiver noise, instability of the antenna phase center, and variations of the feeder line parameters). Performance requirements to the interferometer are considered.

KEY WORDS: refraction, interferometer, geostationary satellite



References
  1. Gontar, I.D., Turgenev, I.S., Sinitskiy, V.B., and Shirmanova, S.I., (1989), Experimental investigation of a possibility of monitoring radio wave propagation conditions using radio interferometric observations of transatmospheric signals from artificial satellites, Preprint, Kharkov: 17 p. (in Russian).
  2. Research project “Radar-1”: a Technical report, (2001), Kharkov: 195 p. (in Russian).
  3. Sinitskiy, V.B., Turgenev, I.S., and Shirmanov, S.I., (1993), Estimating and modeling atmospheric refraction angles with the use of radio occultation measurements for an artificial satellite over the sea, Radiotekhnika. 96:52-60 (in Russian).
  4. Gaikovich, K.P., (1992), Ground-based Doppler radio refractometry of the atmosphere, Izv. VUZov. Radiofizika. 35(3,4):211-219 (in Russian).
  5. Gaikovich, K.P., Gurvich, A.S., and Naumov, A.P., (1983), A technique for recovering meteorological parameters from interior measurements of refraction of optical cosmic sources, Izv. AN SSSR. FAO. 19(7):675-682 (in Russian).
  6. Bagaturov, A.N., Gaikovich, K.P., and Gurvich, A.S., (1990), On a possibility of detecting reflective layers in the troposphere over the sea using amplitude variations of radio signals from artificial satellites, Dokl. AN SSSR. 315(4):830-834 (in Russian).
  7. Pavelev, A.G., (1980), On solving the inverse problems of refraction, Radiotekhnika and Elektronika. 25(12):2504-2509 (in Russian).
  8. Pavelev, A.G., (1982), Solution of the inverse problem of refraction, Radiotekhnika and Elektronika. 27(5):1037-1039 (in Russian).
  9. Kolosov. M.A., and Pavelev, A.G., (1982), Radio monitoring of the atmosphere with the use of transatmosphere signals from artificial and natural sources, Radiotekhnika and Elektronika. 27(12):2310-2317 (in Russian).
  10. Apmand, N.A., Andrianov, V.A., and Smirnov, V.M., (1987), Recovering the refractive index profile in the troposphere using frequency measurements of signals from an artificial satellite, Radiotekhnika and Elektronika. 32(4):673-680 (in Russian).
  11. Alexeev, G.A. and Belobrova, M.V., (2003), On a convolutional equation of the inverse problem of refraction, Radiofizika and Elektronika. 8(2):229-230 (in Russian).
  12. Vasilenko, N.A., Gaikovich, K.P., and Sumin, M.I., (1985), A technique for recovering height profiles of the refractive index and meteorological parameters of the atmosphere from measurements of astronomical refraction, Preprint,Gorkiy: 20 p. (in Russian).
  13. Yakubov, V.P., and Simakova, N.A., (1987), Inverse problem of refraction in the Earth’s atmosphere, Radiotekhnika and Elektronika. 32(7):1367-1373 (in Russian).
  14. Bean, B.R. and Dutton, E.J., (1976), Radio meteorology, NBS monograph, 92 p.
  15. Shabelnikov, A.V., (2002), Evolution of the problem of electromagnetic wave refraction, Zarubezgn. Radioelektronika: Uspekhi Sovremennoy Radioelektroniki. 9:31-35 (in Russian).
  16. Gaykovich, K.P. and Chernyaeva, M.B., (2000), Estimation of the atmospheric refraction from the data on ray propagation along various radio paths, Izv. VUZov. Radiofizika. 43(4):304-309 (in Russian).
  17. Kalinin, A.I., (1979), Radio wave propagation along ground-to-ground and space links, Svyaz, Moscow: 269 p. (in Russian).
  18. Bean, B.R. and Thayer, G.D., (1959), Models of the atmospheric radio refractive index, Proc. of the IRE. 47(5):740-755.
  19. Kolosov, M.A. and Shabelnik, A.V., (1976), Electromagnetic wave refraction in the atmospheres of the Earth, Venus and Mars, Sov. Radio, Moscow: 219 p. (in Russian).
  20. http://wwwCelesTrak.com/
  21. Hoots, F.R., (1980), A short efficient analytical satellite theory, AIAA Paper. 80:1659.
  22. Hilton, C.G., and Kuhlman, J.R., (1966), Mathematical models for the space defense center, Philco-Ford Publication. U-3871:17-28.
  23. Kuhn, R., (1964), Microwave antennas, VEB Verlag Technik, Berlin, - 517 p.
  24. Jagnke, E., Emde, F., and Losch, F., (1960), Special functions: Formulas, graphs, tables, Teubner, Stuttgart, 433 p.
  25. Barton, D.K. and Ward, H.R., (1969), Handbook on radar measurement, Prentice-Hall, Inc., Englewood cliffs, New Jersey, - 392 p.
  26. Belavin, O.V., (1977), Fundamentals of radio direction-finding, Sov. Radio, Moscow: 392 p. (in Russian).
  27. Troizkiy, V.I., (1957), UHF wave fading on radio relay links, Elektrosvyaz, 10:32-39 (in Russian).


pages 505-522

Back