TELECOMMUNICATIONS AND RADIO ENGINEERING - 2010 Vol. 69,
No 5
 

 

 

 

Advanced Methods of Increasing and Monitoring the Lifetime of Nonequilibrium Minority Charge Carriers in Master Dies for High-Performance Silicon Solar Cells


M.V. Êirichenko, R.V. Zaitsev, & V.R. Êîpach
National technical University “Kharkiv polytechnical Institute”
21, Frunze St., Kharkiv 61002, Ukraine
«Address all correspondence to M.V. Êirichenko E-mail: kirichenko-mv@mail.ru

Abstract
The distribution of nonequilibrium minority charge carrier lifetime τn,p in the depth of single-crystal silicon wafers was investigated by the improved method of stationary photoconduction decrease and by the standard method of photoconduction decay. The wafers of p- and n-type conduction used in hardware products for the electronic engineering were tested. To increase τn,p in the near-surface regions the wafers were subjected to the gettering annealing and deep chemical etching. Basing on the comparative analysis of resulting τn,p values it is proposed to use silicon wafers treated by chemical etching as master dies for domestic manufacture of alternative high-performance multijunction photovoltaic converters with vertical diode cells.

KEY WORDS: master silicon dies, lifetime, nonequilibrium minority charge carriers, photoconduction



References
  1. Farenbrukh, A. and Byub, R., (1987), Solar cells: Teoriya i eksperiment. Energoatomizdat, Moscow: 280 p. (in Russian).
  2. Gray, J.L., (2003), The physics of the solar cell. Handbook of photovoltaic science and engineering. Chichester: John Wiley & Sons Ltd, pp. 61-112.
  3. Kirichenko, Ì.V., Zaitsev, R.V., Deineko, N.V. et al., (2007), Influence of a design-engineering solution of silicon photovoltaic converters on the parameters of minor charge carriers in their master dies, Radiofizika i elektronika. 12(1):255-262 (in Russian).
  4. Zaitsev, R.V., Kirichenko, Ì.V., and Kopach, V.R., (2007), Parameters of minor charge carriers in the master dies of silicon photovoltaic converters, VII Kharkiv Conference of Young Scientists “Radiophysics and Electronicks”, Kharkiv, P. 75/145 (in Russian)
  5. Labunov, Yu.Ì., Baranov, I.L., Bondarenko, V.G. et al., (1983), Advanced methods of gettering in the semiconductor electronic technology, Zarubezhnaya elektronnaya tekhnika. 11(270):3-66 (in Russian).
  6. Szlufcik, J., Sivothaman, S., Nijs, J.F. et al., (2003), Low cost industrial technologies of crystalline silicon solar cells,Practical handbook of photovoltaics: fundamentals and applications, Kidlington, Oxford: Elseiver Science Ltd, pp. 156-183.
  7. Koch, W., Endros, A.L., Franke, D. et al., (2003), Bulk crystal growth and wafering for PV, Handbook of photovoltaic science and engineering,  Chichester: John Wiley & Sons Ltd, pp. 205-254.
  8. Pavlop, L.P., (1987), Methods for measuring parameters of semiconductor materials. Vyshsaya Shkola, Moscow: 239 p. (in Russian).
  9. Ceccaroli, B. and Lohne, O., (2003), Solar grade silicon feedstock, Handbook of photovoltaic science and engineering. Chichester: John Wiley & Sons Ltd, pp. 153-204.
  10. Kovtonyuk, N.F. and Kontsevoy, Yu.À., (1970), Measurement of semiconductor material parameters. Metalurgiya, Moscow: 432 p. (in Russian).
  11. Graff, Ê. and Fisher, G., (1982), Carrier lifetime in silicon and its influence on the characteristics of solar cells, in: Solar energy conversion. Voprosy fiziki tvyordogo tela. Energoizdat, Moscow: 151-189 (in Russian).
  12. Milns, À. and Foikht, D., (1975), Heterojunctions and metal-semiconductor junctions. Mir, Moscow: 432 p. (in Russian).
  13. Kirichenko, Ì.V., Zaitsev, R.V., Kopach, V.R. et al., (2008), Light-emitting diode lighter, Patent for a useful model No 33676. Ukraine, MPK G01R 31/26, H01L 21/66. Application of. 04.02.2008; entered 10.07.2008 (in Russian).
  14. Shalimova, Ê.V., (1976), Physics of semiconductors. Energy, Moscow: 416 p. (in Russian).
  15. Zi, S., (1984), Physics of semiconductor devices. Mir, Moscow: 456 p. (in Russian).
  16. Antonova, V.À., Borschyov, V.N., Kopach, V.R. et al., (2002), Promising design-engineering solutions of monocrystalline silicon photovoltaic converters for space destinations, Radiotekhnika. 125:110-116 (in Russian).
  17. Koltun, Ì.Ì., (1987), Solar cells. Nauka, Moscow: 210 p. (in Russian).
  18. Green, M.A. and Keevers, M.J., (1995), Optical properties of intrinsic silicon at 300K, Progress in Photovoltaics Research and Applications. 3:189-192 (in Russian).
  19. Bulkin, À.D. and Yakivchik, N.I., (1984), Technology and equipment for manufacture of semiconductor power devices, Energoatomizdat, Moscow: 256 p. (in Russian).
  20. Kirichenko, M.V., Tymchuk, I.T., Antonova, V.A. et al., (2007), Optimization of base crystals for silicon solar cells of various destinat-ions, Functional Materials. 14(1):61-67.
  21. Kopach, V.R., Kirichenko, M.V., Shramko, S.V. et al., (2008), Double-layer ITO/Al back surface reflector for single-junction silicon photoconverters, Functional Materials. 15(4):604-607.
  22. Kopach, V.R., Kirichenko, M.V., Shramko, S.V. et al. (2008), New approach to the efficiency increase problem for multijunction silicon photovoltaic converters with vertical diode cells, Functional Materials. 15(2):253-258.


pages 441-450

Back