A METHOD FOR AUTOMATIC BLIND ESTIMATION OF ADDITIVE NOISE VARIANCE IN DIGITAL IMAGES
V.V. Lukin, S.K. Abramov, A.V. Popov, P.Ye. Eltsov
National Aerospace University (Kharkov Aviation Institute),
17, Chkalov St., Kharkiv, 61070, Ukraine Address all correspondence to V.V. Lukin E-mail: lukin@ai.kharkov.com
B. Vozel, K. Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
Abstract
An automatic method for blind evaluation of additive noise in digital image based on image pre-segmentation, Gaussianity test, and minimal inter-quantile processing of a set of local variance estimates in blocks is proposed. The purposes all aforementioned operations are applied for are discussed. Their joint use allows removing abnormal local estimates that can arise due to image content heterogeneity in blocks and clipping effects that may occur due to several reasons. The proposed method is tested for components of color images in TID2008 database and it is shown to perform accurately enough for most of them.
KEY WORDS:blind estimation, noise variance, testing, large database, color images
References
- Plataniotis, K.N. and Venetsanopoulos, A.N., (2000), Color Image Processing and Applications, Springer-Verlag, NY.
- Vozel, B., Abramov, S., Lukin, V., Ponomarenko, N., Uss, M., and Chehdi, K., (2009), Blind methods for noise evaluation in multi-component images, Book chapter in: Multivariate image processing, ISTE Ltd, France, pp. 263-301.
- Nidal, S. and Kamel, K.S., (2004), Image Signal-to-Moise Ratio and Noise Variance Estimation Using Autoregressive Model, Scanning, 26:277-281
- Meer, P., Jolion, J., and Rosenfeld, A., (1990), A fast parallel algorithm for blind estimation of noise variance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):216-223.
- Evans, A.N., (2006), Nonlinear Edge Detection in Color Images, Chapter 12 in: Advances in Nonlinear Signal and Image Processing, USA, Hindawi, 329-355.
- Sendur, L. and Selesnick, I.W., (2002), Bivariate shrinkage with local variance estimation, IEEE Signal Processing Letters, 9(12):438-441.
- Ponomarenko, N., Lukin, V., Zriakhov, M., Egiazarian, K., and Astola, J., (2006), Estimation of accessible quality in noisy image compression, Proceedings of EUSIPCO, Florence, Italy, 4 p.
- Healey, G.E. and Kondepudy, R., (1994), Radiometric CCD camera calibration and noise estimation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(3):267-276.
- Lukin, V.V., Abramov, S.K., Ponomarenko, N.N., Uss, M.L., Vozel, B., Chehdi, K., and Astola, J.T., (2009), Processing of images based on blind evaluation of noise type and characteristics, Proceedings of SPIE Symposium on Remote Sensing, Berlin, Germany, 7477, 12 p.
- Olsen, S.I., (1993), Estimation of noise in images: an evaluation, Graphical Models and Image Processing, 55:319-323.
- Rank, K., Lendl, M., and Unbehauen, R., (1999), Estimation of Image Noise Variance, IEE Proceedings on Vision, Image and Signal Processing, 146(2):80-84.
- Liu, C., Freeman, W.T., Szeliski, R., and Kang, S.B., Noise estimation from a single image, Proc. IEEE Conf. Computer Vision and Patter Recognition, pp. 901-908.
- Zlokolica, V., Pizurica, A., and Philips, W., (2006), Noise estimation for video processing based on spatio-temporal gradients, IEEE Signal Processing Letters, 13(6):337-340.
- Lee, J.-S., Hoppel, K., and Mango, S.A., (1992), Unsupervised Estimation of Speckle Noise in Radar Images, International Journal of Imaging Systems and Technology, 4:298-305.
- Foi, A., (2007), Pointwise Shape-Adaptive DCT Image Filtering and Signal-Dependent Noise Estimation, Thesis for the degree of Doctor of Technology, Tampere University of Technology, Tampere, Finland.
- Oktem, R., Egiazarian, K., Lukin, V., Ponomarenko, and Tsymbal, O., (2007), Locally Adaptive DCT Filtering for Signal-Dependent Noise Removal, EURASIP Journal on Advances in Signal Processing, Article ID 42472, 10 p.
- Lukin, V.V., Abramov, S.K., Uss, M.L., Marusiy, I.A., Ponomarenko, N.N., Zelensky, A.A., Vozel, B., and Chehdi, K., (2009), Testing of methods for blind estimation of noise variance on large image database, Theoretical and practical aspects of digital signal processing in information-telecommunications systems, Shakhty, Russia, pp. 43-70 (available at http://k504.xai.edu.ua/eng/prepods_eng.php?link=lukin_eng).
- Lukin, V., Abramov, S., Vozel, B., Chehdi, K., and Astola, J., (2008), Segmentation-based method for blind evaluation of noise variance in images, SPIE Journal on Applied Remote Sensing, 2:15 p.
- Ponomarenko, N., Krivenko, S., Lukin, V., Egiazarian, K., (2010), Lossy Compression of Noisy Images Based on Visual Quality: A Comprehensive Study, EURASIP Journal on Advances in Signal Processing.
- Foi, A., Trimeche, M., Katkovnik, V., and Egiazarian, K., (2007), Practical Poissonian-Gaussian Noise Modeling and Fitting for Single Image Raw Data, IEEE Transactions on Image Processing, 17(10):1737-1754.
- Danielyan, A. and Foi, A., (2009), Noise variance estimation in non-local transform domain, Proceedings of LNLA, Tuusula, Finland, pp. 41-45.
- Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Astola, J., Ñarli, M., and Battisti F., (2009), TID2008 – A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics, Advances of modern radioelectronics. Moscow, 10:30-45 (available at http://www.ponomarenko.info/papers/mre2009tid.pdf).
- Snyder, P.D., Pawlicki, T.F., and Gaborski, R.S., (1999), US patent #5,923,775: Apparatus and method for signal dependent noise estimation and reduction in digital images.
- Gindele, E.B. and Serrano, N., (2000), Estimating noise for a digital image utilizing updated statistics, U.S. Patent No 7,054,501, Eastman Kodak Company (Rochester, NY, US).
- Ponomarenko, N.N., Lukin, V.V., Abramov, S.K., Egiazarian, K.O., and Astola, J.T., (2003), Blind evaluation of additive noise variance in textured images by nonlinear processing of block DCT coefficients, Proceedings of International Conference Image Processing: Algorithms and Systems II, SPIE, 5014, Santa Clara (CA, USA), pp. 178-189.
- Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., and Astola, J., (2007), An automatic approach to lossy compression of AVIRIS images, Proceedings of IGARSS, Barcelona, Spain,
pp. 472-475.
- Abramov, S.K., Lukin, V.V., Zelensky, A.A., and Astola, J.T., (2002), Blind evaluation of noise variance in images using myriad operation, Proc. of IS&T/SPIE International Conference on Image Processing: Algorithms and Systems, SPIE, 4667, San Jose, USA, 192-203.
- Lukin, V.V., Abramov, S.K., Vozel, B., and Chehdi, B., (2005), A method for blind automatic evaluation of noise variance in images based on bootstrap and myriad operations, Proceedings of SPIE/EUROPTO Symp. on Satellite Remote Sensing, SPIE, 5982, Bruges, Belgium, pp. 299-310.
- Lukin, V.V., Abramov, S.K., Zelensky, A.A., Astola, J., Vozel, B., and Chehdi, B., (2007), Improved minimal inter-quantile distance method for blind estimation of noise variance in images, Proceedings of SPIE, SPIE, 6748, Florence, Italy, 12 p.
- Lukin, V.V., Abramov, S.K., Ponomarenko, N.N., Vozel, B., and Chehdi, K., (2006), Methods for blind evaluation of noise variance in multichannel optical and radar images, Telecommunications and Radio Engineering, 65(6):509-537.
- Lukin, V.V., Koivisto, P.T., Ponomarenko, N.N., Abramov, S.K., and Astola, J.T., (2005), Two-stage Methods for Mixed Noise Removal, CD-ROM Proceedings of EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP), Japan, 6 p.
- Abramov, S.K., Lukin, V.V., Ponomarenko, N.N., Egiazarian, K.O., and Pogrebnyak, O.B., (2004), Influence of multiplicative noise variance evaluation accuracy on MM-band SLAR image filtering efficiency, Proceedings of the Fifth International Kharkov Symposium “Physics and Engineering of Millimeter and Sub-Millimeter Waves”, Kharkov, Ukraine, 1:250-252.
- Lukin, V.V., Ponomarenko, N.N., Abramov, S.K., Vozel, B., Chehdi, K., and Astola, J., (2008), Filtering of radar images based on blind evaluation of noise characteristics, Proceedings of Image and Signal Processing for Remote Sensing XIV, Cardiff, UK, SPIE, 7109, 12 p.
- Vozel, B., Chehdi, K., and Klaine, L., (2006), Noise identification and estimation of its statistical parameters by using unsupervised variational classification, Proceedings of ICASSP, II, pp. 841-844.
- Popov, A., Piogrebnyak, O., and Brashevan, A., (2007), Unsupervised Remote Sensing Data Classification Using Multimodal Statistical Model, Proceedings of the First International Conference on Industrial Informatics, Mexico City, Mexico, 10 p.
- Shapiro, S., Wilk, M.Â., and Chen, H.J., (1968), A comparative study of various tests for normality, JASA. 63(324):1343-1372.
- D’Agostino, R.B, (1970), Transformation to normality of the null distribution of g1, Biometrika, 57:679-681.
- Kendall, M.G., (1945), Advanced theory of statistics, London, UK, Charles Griffin & Company.
- Baringhaus, L., Danschke, R., and Henze, N., (1989), Recent and classical tests for normality – A comparative study, Comm. Statistic. B, 18(1):363-379.
- D’Agostino, R.B. and Belanger, A., (1990). A suggestion for using powerful and informative tests of normality, The American Statistician, 44(4):316-321.
| |