TELECOMMUNICATIONS AND RADIO ENGINEERING - 2010 Vol. 69,
No 18
 

 

 

 

RADIALLY TWO-LAYER SPHERE AS A SENSOR OF DIELECTRIC CHARACTERISTICS OF A LIQUID INTO WHICH IT IS SUBMERGED

A.Y. Kirichenko, Y.V. Prokopenko, O.A. Suvorova, & Y.F. Filippov
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
Address all correspondence to Y.V. Prokopenko E-mail: prokopen@ire.kharkov.ua

Abstract
The possibility is analyzed of applying a spherical, radially two-layer dielectric resonator as a sensor for determining the medium complex permittivity. Expressions for the electromagnetic field components of eigenmodes and characteristic equations of the resonator are presented. Numerical investigations of a centimeter wavelength resonator with a quartz interior and polikor exterior layer being placed into various media are performed. It is shown that the resonator eigenfrequency is sensitive to variations of the ambient medium permittivity with the effect being dependent on the radial thickness of the external layer.
KEY WORDS:electrodynamics of resonators, resonators supporting whispering gallery modes, eigenmode oscillations, permittivity estimation

References

  1. Vlasov, S.N., (1967), Whispering gallery modes in open resonant cavities with a dielectric rod, Radiotekhnika and Elektronika. 12(3):572-573 (in Russian).
  2. Wait, J.R., (1967), Electromagnetic whispering gallery modes in dielectric rod, Radio science. 2(9):1005-1017.
  3. Kostromin, V.V., Bykov, Ye.V., and Gal’perovich, D.Ya., (1984), Investigation of dielectric properties of nonpolar polymers at frequencies 16 to 38 GHz within the temperature range 4.2 to 300 K, Elektron. Tekhn. Ser. Elektronika SVCh. 4(364):52-55 (in Russian).
  4. Krupka, J., Derzakowski, K., Abramowiez, A. et al., (1999), Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials, IEEE Transactions on Microwave Theory and Techniques. 47(6):752-759.
  5. Derkach, V.N., Filippov, Yu.F., Plevako, A.S. et al., (2004), Determination of microwave parameters of isotropic mediums by using an open quasi-optical spherical resonator, Int. Journ. of Infrared and Millimeter Waves. 25(1):139-148.
  6. Prokopenko, Yu.V., Filippov,Yu.F., and Shipilova, I.A., (2006), Influence of an annular layer made of various materials on the eigenfrequency and Q-factor of a cylindrical quasi-optical dielectric resonator, Pis’ma v Zhurnal Tekhn. Fiziki. 32(7):36-41 (in Russian).
  7. Prokopenko, Yu.V., Filippov,Yu.F., and Shipilova, I.A., (2008), Field distribution of the whispering gallery modes in a radially two-layered cylindrical dielectric resonator, Izv. VUZov. Radiofizika. 51(7):622-632 (in Russian).
  8. Ganapolskii, E.M. and Golic, A.V., (1997), A sapphire sphere resonator for the measurement of low dielectric losses in the millimeter-wave range in liquids, Measurements and Scientific Technology. 8:1016-1022.
  9. Annino, G., Bertolini, D., Cassettari, M. et al., (2000), Dielectric properties of materials using whispering gallery dielectric resonators: Experiments and perspectives of ultra-wideband characterization, Journ. of Chemical Physics. 112(5):2308-2314.
  10. Prokopenko, Yu.V., Filippov,Yu.F., Shipilova, I.A., and Yakovenko, V.M., (2006), Whispering gallery modes in a hemispherical isotropic dielectric resonator with a perfectly conductive plane surface, Zhurnal Tekhn. Fiziki. 76(2):102-111 (in Russian).
  11. Arnold, S., Khoshsima, M., Teraoka, I. et al., (2003), Shift of whispering-gallery modes in microspheres by protein absorption, Optics Letters. 28(4):272-274.
  12. Datsyuk, V.V. and Izmaylov, I.A., (2001), Optics of micron-size drops, Uspekhi Fiz. Nauk. 171(10):1117-1129 (in Russian).
  13. Pluchino, A.B., (1981), Surface waves and the radiative properties of micron-sized particles, Applied Optics. 20(17):2986-2992.
  14. Eremenko, Z.Ye., (2004), A quasi-optical layered spherical resonator for measuring permittivity of strongly absorbing liquids at millimeter wavelengths, Radiofizika and Elektronika. 9(2):442-451 (in Russian).
  15.  Han, M. and Wang, A., (2007), Temperature compensation of optical microresonator using a surface layer with negative thermo-optic coefficient, Optics Letters. 32(19):1800-1802.
  16. Gaathon, O., Culic-Viskota, J., Mihnev, M. et al., (2006), Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement, Applied Physics Letters. 89:223901–223903.
  17. Filippov, Yu.F., Kogut, A.Ye., Kutuzov, V.V., and Eremenko, Z.Ye., (1999), Radial distribution of the oscillation energy in a screened layered hemispherical resonator, Radiofizika and Electronika. 4(3):90-95 (in Russian).
  18. Weinstein, L.A., (1957), Electromagnetic waves. Sov. Radio, Moscow: 581 p. (in Russian).
  19. Il’chenko, M.Ye., Vzyatyshev, V.F., Gasanov, L.G. et al., (1989), Dielectric resonators. Radio and Svyaz, Moscow: 328 p. (in Russian).
  20. Baranik, O.A., Prokopenko, Yu.V., Filippov, Yu.F., and Cherpak, N.T., (2003), Electromagnetic whispering gallery modes in liquids, Doklady NANU. 3:77-79 (in Russian).
  21. Akhadov, Ya.Yu., (1977), Dielectric properties of binary solutions. Nauka, Moscow: 400 p. (in Russian).


pages 1661-1672

Back