TELECOMMUNICATIONS AND RADIO ENGINEERING - 2010 Vol. 69,
No 14
 

 

 

 

INVESTIGATION OF TUNABLE TWO-CASCADE DYE LASERS


P.G. Dalchenko
Ukrainian Engineering and Pedagogical Academy
16, Universitetskaya St., Kharkiv, Ukraine
M.I. Dzyubenko, F.S. Zamkovoy, & V.V. Shevchenko
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv, 61085, Ukraine
«Address all correspondence to M.I. Dzyubenko E-mail: dzjub@ire.kharkov.ua

Abstract
Numerical calculations on the formation of spectral-energy characteristics of the radiation from multipass amplifiers (MPA) of fleshlamp-pumped dye lasers are carried out. Analysis of experimental results has shown that at the MPA output, besides the amplified monochromatic radiation, one can observe a broadband radiation with the energy    depending on the injected signal power. The calculated minimum level of the injected power providing the background radiation elimination within the limits of a sufficiently broad tuning band in the system
(AX – 17 nm) was of about 10 kW that coincides with the known experimental results.

KEY WORDS:  multipass amplifier, dye laser, energy, lasing spectrum

References

  1. Gittins, C.M., Shenoy, S.U., Aldag, H.R., Pacheco, D.P., Miller, M.E., and Allen, M.G., (2000), Measurement of major species in a high pressure gas turbine combustion simulator using Raman scattering, 38th AIAA Aerospace Sciences, Meeting & Exhibit, Ren, NV American Institute of Aeronautics and Astronautics. Paper No 2000-0772.
  2. Sentell, J.C., (1994), Fourier transform Raman lidar for trace gas detection and quantification, SPIE Proceeding. 2266:557-565.
  3. Ganiel, U., Hardy, A., and Trevels, D., (1976), Analysis of Injection Locking in Pulsed Dye Laser Systems, IEEE J. of Quantum Electronics, OE-12(11):104-716.
  4. Juramy, P., Flamant P., and Meyer, W.H., (1977) Special Properties of Pulsed Dye Lasers, J. of Quantum Electronics. QE-13(10):855-865.
  5. Zitelli, M., Fazio, E., and Bertolotti, M., (1998), On the Design of Multipass Dye Laser Amplifier, IEEE J. of Quantum Electronics, 34(4):609-615.
  6. Shevchenko, V.V., (2003), Calculation of spectral-time characteristics of the radiation from the tunable flashlamp-pumped dye lasers, Radiofizika i Electronika. 8(3):386-392 (in Russian).
  7. Naumenko, I.G., Pelipenko, V.P., Dzyubenko, M.I., and Shevchenko, V.V., (1993) Evolution of spatial-angular characteristics of flashpumped dye lasers, Kvantovaya Elektronika, 20(2)123-128 (in Russian).
  8. Tatamoto, Y., Ohtsuzuki, M., and Suzuki, K., (1977), Wavelength Dependence in Rhodamine Dye Laser Oscillation, Journal of the Society of Photographic Science and Technology of Japan, 40(4):165-169.
  9. Guerra, J.M. and Iparraguirre, I., (1986), Spectral evolution of a flash-lamp-pumped dye laser, Optical and Quantum Electronics, 18:29-33.
  10. Brunner, W. and Paul, H., (1982), Time behavior of the spectral properties of dye lasers, Optical and Quantum Electronics, 14:453-459.
  11. Shefer, F.P. (ed.) (1976), Dye Lasers, Mir, Moscow: 330 p. (in Russian).
  12. Zvelto, O., (1979), Laser Physics, Mir, Moscow: 373 p. (in Russian).
  13. Gondra, A.D. and Kozlov, N.A., (1978), On hydroacoustic perturbations in the active medium of liquid lasers, Zhournal Prikladnoj Spektroskopii, 28(6):984-991 (in Russian).
  14. Webb, J.P., McColgan, W.S., and Peterson, O.G. (1970), Intersystem Crossing Rate and Triplet State lifetime for lasing Dye, J. Chemical Physics, 53(11):4277-4299.
  15. Hammomd, P.H., (1979), Spectra of the lowest excited singlet states of rhodamine 6G and rhodamine B, IEEE J. of Quantum Electronics, QE-15(7):642-632.
  16. Dzyubenko, M.I., Naumenko I.G., and Pelipenko, V.P. (1987), Multicascade flashpumped dye laser, Kvantovaya Elektronika, 32:13-25 (in Russian).


pages 1269-1276

Back