Abnormal Magnetic Properties of Granular
Co-SiO2/GaAs Nanostructures at the Percolation Threshold Region
M.K. Khodzitskiy, T.V. Bagmut, and S.I. Tarapov
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine
I.G. Shipkova
National Technical University “Kharkiv Polytechnical Institute”,
21, Frunze St., Kharkiv, 61002, Ukraine
L.V. Lutsev
Research Institute 'Ferrite-Domen',
8, Chernigovskaya Street, St Petersburg, 196084, Russia
Stognij and N.N. Novitskii
Institute of Solid State and Semiconductor Physics of NASB,
17, P. Brovki Street, Minsk 220072, Belarus
Abstract
Magnetic properties of granular Cox(SiO2)100-x/GaAs nanostructures with the Co contents x=20-85 at.% were studied. Static magnetic properties were examined by high-sensitive vibrating sample magnetometer (VSM) in the magnetic field up to 5 kOe at room temperature. Dynamic magnetic properties were investigated by the electron spin resonance (ESR) method in the frequency range of 25-28 GHz at room temperature. The anomalous local fall in the dependence of the magnetization on the Co concentration of granular nanostructures has been detected in the vicinity of the percolation threshold. According to the proposed theoretical model, the observed peculiarity of the magnetization dependence can be explained by the influence of the semiconductor substrate on the spin polarization of Co particles in the granular film.
References
- Brosseau, C., Mallegol, S., Queffelec, P., and Youssef, J., (2004), Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies, Phys. Rev. B. 70(9):092401-4.
- Mercier, D., Levy, J.C.S., Acher, O., et al., (2000), Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles, Phys. Rev. B. 62(1):532-544.
- Sato, T., Komai, E., Yamasawa, K., Hatanai, T., et al., (1997), Application of nanocrystalline Fe(or Co-Fe)-Hf-O magnetic films with high electrical resistivity to micro DC-DC converters, IEEE Trans. Magn. 33(5):3310-3312.
- Lutsev, L.V., (2006), Potential barrier for spin-polarized electrons induced by the exchange interaction at the interface in the ferromagnet/semiconductor heterostructure, J. Phys. Condens. Matter. 18(26):5881-5894.
- Lutsev, L.V., Stognij, A.I., and Novitskii, N.N., (2005), Giant injection magnetoresistance in gallium arsenide/granulated film heterostructures with nanosize cobalt inclusions, JETP Letters. 81(10):514-518.
- Lutsev, L.V., Stognij, A.I., and Novitskii, N.N., (2006), Giant injection magnetoresistance in the heterostructure gallium arsenide/granular film with cobalt nanoparticles, J. Magn. Magn. Mater. 300(1):e12-e16.
- Lutsev, L.V., (2002), Electron transport in granular amorphous silicon dioxide films with ferromagnetic nanoparticles placed in a magnetic field, Physics of the Solid State. 44(10):1889-1897.
- Wu, L.Z., Ding, J., Jiang, H.B., Neo, C.P., Chen, L.F., and Ong, C.K., (2006), High frequency complex permeability of iron particles in a nonmagnetic matrix, J. Appl. Phys. 99(8):083905.
- Lutsev, L.V., Yakovlev, S.V., Zvonareva, T.K., et al, (2005), Microwave properties of granular amorphous carbon films with cobalt nanoparticles, J. Appl. Phys. 97(10):104327.
- Veselago, V.G., (1964), The electrodynamics of substances with simultaneously negative values of ε and μ, Usp. Fiz. Nauk. 92:517 (in Russian).
- Kittel, C., (1996), Introduction to Solid State Physics, Wiley, New York.
- Tomita, S., Hagiwara, M., Kashiwagi, T., et al., (2004), Ferromagnetic resonance study of diluted Fe nanogranular films, J. Appl. Phys. 95(12):8194.
- Granovsky, A., Kozlov, A., Nedukh, S., et al., (2005), High-frequency spin-dependent tunnelling in magnetic nanocomposites: Magnetorefractive effect and magnetoimpedance, J. Magn. Magn. Mater. 294(2):117-121.
- Xiao, G., and Chien, C.L., (1987), Giant magnetic coercivity and percolation effects in granular Fe-(SiO2) solids, Appl. Phys. Lett. 51(16):1280.
- Xiao, G., and Chien, C.L., (1988), Enhanced magnetic coercivity in magnetic granular solids, J. Appl. Phys. 63(8):4252.
- Liou, S.H., and Chien, C.L., (1988), Granular metal films as recording media, Appl. Phys. Lett. 52(6):512.
- Jiang, Z.S., Ji, J.T., and Jin, G.J., (1995), On the Faraday rotation in Fe-SiO2 granular films, J. Magn. Magn. Mater. 140-144(1):469-470.
- Xiao, G., Liou, S.H., Levy, A., Taylor, J.N., and Chien, C.L., (1986), Magnetic relaxation in Fe-(SiO2) granular films, Phys Rev. B. 34(11):7573-77.
- Holtz, R.L., Lubitz, P., and Edelstein, A.S., (1990), Enhanced magnetic anisotropy at the percolation threshold of Fe-SiO2 composite thin films, Appl. Phys. Lett. 56(10):943.
- Khodzitskiy, M., Lutsev, L., Tarapov, S., et al., (2008), Electron spin resonance properties of semiconductor/granular film heterostructures with cobalt nanoparticles in millimeter waveband, J. Magn. Magn. Mater. 320(5):L37-L41.
- Morrish, A. H., (1965), Physical Principles of Magnetism, Wiley, New York.
- Frei, E. H., Shtrikman, S., and Treves, D., (1959), Critical Size and Nucleation Field of Ideal Ferromagnetic Particles, Phys. Rev. 106(3):446-55.
- Childress, J.R., Chien, C.L., and Nathan, M., (1990), Granular Fe in a metallic matrix, Appl. Phys. Lett. 56(1):95.
- Kakazei, G.N., Kravets, A.F., and Lesnik, N.A., (1999), Ferromagnetic resonance in granular thin films, J. Appl. Phys. 85(8):5654.
- Pires, M.J.M, Denardin, J.C., da Silva, E.C., and Knobel, M., (2006), Ferromagnetic resonance studies in granular Co–SiO2 thin films, J. Appl. Phys. 99(6):063908.
- Stognij, A.I., Novitskii, N.N., and Stukalov, O.M., (2002) Nanoscale ion beam polishing of optical materials, Tech. Phys. Lett. 28(1):17-20 (in Russian)
- Stognij, A.I., Novitskii, N.N., and Stukalov, O.M., (2003), Separate cobalt-copper interface smoothening under the action of low-energy argon ion bombardment, Tech. Phys. Lett. 29(1):43-46 (in Russian).
- Zvonareva, T.K., Lebedev, V.M., Polanskaya, T.A., et al., (2000), Elemental composition and electrical properties of (a-C:H):Cu films prepared by magnetron sputtering, Semiconductors 34(9):1094-1099.
- Barzilai, S., Goldstein, Y., Balberg, I., Helman, J.S., (1981), Magnetic and transport properties of granular cobalt films, Phys. Rev. B. 23(4):1809-17.
- Yakushiji, K., Mitani, S., Takanashi, K., Ha, J-G., et al, (2000), Composition dependence of particle size distribution and giant magnetoresistance in Co–Al–O granular films, J. Magn. Magn. Mater. 212(1-2):75-81.
- Sankar, S., Dender, D., Borchers, J.A., et al., (2000), Magnetic correlations in non-percolated Co–SiO2 granular films, J. Magn. Magn. Mater. 221(1-2):1-9.
- Belozorov, D.P., et al., (2000), High Frequency Resonance Features of Giant Magnetoresistance Multilayers, Intern. Journ. of Infrared and Millimeter Waves. 21(10):1627-1638.
- Gurevich, A.G., and Melkov, G.A., (1996), Magnetization Oscillations and Waves, CRC Press, New York.
- Lutsev, L.V., (2005), Landau-Lifshitz equations and relaxation of spin wave modes in the Heisenberg model with dipole-exchange interaction, J. Phys.: Condens. Matter. 17(38):6057-6080.
- Bagmut, T.V., Nedukh, S.V., Shipkova, I.G., et al., (2006), Granule size and shape influence on static and dynamic properties of magnetic nanocomposites, J. Magn. Magn. Mater. 302(2):334-339.
- Lutsev, L.V., Kazantseva, N.E., et al., (2003), Dielectric and magnetic losses of microwave electromagnetic radiation in granular structures with ferromagnetic nanoparticles, J. Phys.: Condensed Matter. 15(22):3665-3681.
- Vonsovskii, S.V., (1974), Magnetism, John Wiley & Sons, New York.
- Verdes, C.G., Ruiz-Diaz, B., and Thompson, S.M., (2001), Model of ferromagnetic resonance in granular magnetic solids, J. Appl. Phys. 89(11):7475.
- Ruderman, M.A., and Kittel, C., (1954), Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 99(1):102.
- Kasuya, T., (1956), Prog. Theor. Phys. 16:45.
- Yosida, K., (1957), Magnetic Properties of Cu-Mn Alloys, Phys. Rev. 106(5):893-898.
|