Complex Excitation Antenna Array Synthesis Using Fuzzy Genetic Algorithms
B. Kadri
Electronic Institute, University Center of Bechar, BP 417, 08000, Algeria
F.T. Bendimered
Antennas and Telecommunications Laboratory, Abou-Bakr Belkaid University, Tlemcen, Algeria
Abstract
This paper presents a novel electromagnetic optimization technique based on the use of an adaptive genetic algorithm for the synthesis of antenna arrays by optimizing complex coefficients to best meet a desired radiation patterns. The dynamic control of genetic algorithm setting parameters or control parameters such us: mutation or crossover probabilities has been realized using the well known performances of fuzzy set theory. A fuzzy controller is designed to adjust on line the control parameters of genetic algorithms depending on the measure of the population diversity. The presented optimization algorithms were previously checked on specific mathematical test function and show their superior capabilities with respect to the standard version (standard genetic algorithms). Included examples demonstrate the best performances obtained while implementing fuzzy genetic algorithms (FGAs).
References
- Haupt, R.L., (1995), An Introduction to Genetic Algorithms for Electromagnetics, IEEE Antenna and propagation Magazine, 37:7-15.
- Marcano, D. and Duran, F., (2000), Synthesis of Antenna Arrays Using Genetic Algorithms, IEEE Antenna and propagation Magazine, 42(3).
- Donelli, M., Coarsi, S., De Natale, F., Pastorino, M., and Massa, A., (2004), Linear Antenna Synthesis With Hybrid Genetic Algorithm, Progress in Electromagnetics Research, 49:1-22.
- Kadri, B., Bendimered, F.T., and Cambiaggio, E., (1998), Synthèse Rigoureuse D’antennes Microrubans en Réseau non Périodique par Modélisation des Circuits d’Alimentations, 10ème Journées Internationales de Nice sur les Antennes, JINA’98, International Symposium, pp. 358-361, Nice, 17-19 Novembre.
- Kadri, B., Bendimered, F.T., and Cambiaggio, E., (1999), Modelisation of the Feed Network Application to Synthesis Unequally Spaced Microstrip Antennas Arrays, International Conference on Electromagnetics in Advanced Applications ICEAA 99, pp. 371-374, Torino, 13-17 September.
- Holland, J., (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan Press.
- Xiagofeng, Qi, Francesco, Palmieri, (1994), Theoretical analysis of Evolutionary Algorithms with an infinite Population Size in Continuous Space, Part II: Analysis of the diversification Role of Crossover, IEEE Trans on Neural Networks, 5(1).
- Wang, K., (2001), A New Fuzzy Genetic Algorithm Based on Population Diversity, International Symposium on Computational Intelligence in Robotics and Automation, pp. 108-112, Alberta, Canada.
- Herrera, F. and Lozano, M., (2001), Adaptive Genetic Operators Based on Coevolution with Fuzzy Behaviors, IEEE Transaction on Evolutionary Computation, 5(2).
- Lee, M.A. and Takagi, H., (1993), Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques, International Conference on Genetic algorithms ICGA’93, Urbana-Champaign, pp. 76-83.
- Cheng, D.K., (1971), Optimization techniques for antenna arrays, Proc IEEE, 59:1664-1674.
- Garg, R., Bhartia, P., Bahl, I., and Ittipiboon, A., (2001), Microstrip Antenna design Handbook, Artech House INC, ISBN 0-89006-513-6.
- Haupt, R.L., and Johnson, J.M., (1999), Dynamic Phase-Only Array Beam Control Using a Genetic Algorithm, evolvable Hardware, 217-224, EH’99, Pasadena, CA, USA, IEEE Computer Society.
|