TELECOMMUNICATIONS AND RADIO ENGINEERING - 2009 Vol. 68,
No 1
 

 

 

 

Comparative Research on the Adequacy of GO/PO-, FDTD-, and IE-Based Numerical Algorithms for Analyzing Compact Dielectric Lenses in MM and SubMM Integrated Antennas



A.V. Boriskin, and A.I. Nosich
A. Usikov Institute of Radio Physics and Electronics,
National Academy of Sciences of Ukraine
12, Academician Proskura St., Kharkiv 61085, Ukraine

G. Godi, A. Rolland, and R. Sauleau
Institute of Electronics and Telecommunication, University of Rennes
1, Campus de Beaulieu, bat 11D, 35042 Rennes Cedex, France

Abstract
The subject of the paper is estimation of the accuracy and applicability of the numerical algorithms based on the methods of the geometrical and physical optics (GO/PO), and the finite difference in time domain (FDTD) method for analyzing the electromagnetic properties of two-dimensional reduced-size hemielliptical lenses that are the key elements of the dielectric lens antennas in the mm and submm wave range applications. The reference solution has been derived by the Muller boundary integral equations (IE) that provide the controllable accuracy of the numerical solution to the problem of the electromagnetic wave diffraction by a dielectric cylinder of an arbitrary cross-section. The numerical results concern the field characteristics in the near- and far-field hemielliptical lenses made of rexolite, quartz and silicon, considering both E- and H-polarizations. A special attention has been paid to analyzing the resonance inside the lens.

References

  1. Zelkin, Y.G. and Petrova, R.A., (1974), Lens antennas. Sov. Radio, Moscow: 280p. (in Russian).
  2. Salema, C., Fernandes, C., and Jha, R.T., (1998), Solid Dielectric Horn Antennas. Boston, Artech House, - 241 ð.
  3. Filippovic, D.F., Gearhart, S.S., and Rebeiz, G.M., (1993), Double slot on extended hemispherical and elliptical silicon dielectric lenses, IEEE Trans. Microwave Theory and Techniques. 41(10):1738-1749.
  4. Fernandes, C.A., and Fernandes, J.G., (1999), Performance of lens antennas in wireless indoor millimeter-wave applications, IEEE Trans. Microwave Theory Techniques. 47(6):732-738.
  5. Wu, X., Eleftheriades, G.V., and van Deventer-Perkins, T.E., (2001), Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications, IEEE Trans. Microwave Theory and Techniques. 49(3):431-441.
  6. Lemaire, D., Fernandes, C.A., Sobieski, P., and Barbosa, A., (1996), A method to overcome the limitations of GO in axis-symmetric dielectric lens shaping, Int. J. Infrared and Millimeter Waves. 17(8):1377-1390.
  7. Uehara, K., Miyashita, K., Natsume, K.I., Hatakeyama, K., and Mizuno, K., (1992), Lens-coupled imaging arrays for the mm and sub-mm-wave regions, IEEE Trans. Microwave Theory and Techniques. 40(5):806-811.
  8. Raman, S., Barker, N.S., and Rebeiz, G.M., (1998), A W-band dielectric-lens-based integrated monopulse radar receiver, IEEE Trans. Microwave Theory and Techniques. 46(12):2308-2316.
  9. Eleftheriades, G.V., Brand, Y., Zürcher, J., and Mosig, J.R., (1997), ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens, Electronics Letters. 33(3):169-170.
  10. Schoenlinner, B., Wu, X., Ebling, J.P., Eleftheriades, G.V., and Rebeiz, G.M., (2002), Wide-scan spherical-lens antennas for automotive radars, IEEE Trans. Microwave Theory and Techniques. 50(9):2166-2175.
  11. Siegel, P., (2002), Terahertz Technology, IEEETrans. Microwave Theory and Techniques. 50(3):910-929.
  12. Rudd, J.V., and Mittleman, D., (2002), Influence of substrate-lens design in terahertz time-domain spectroscopy, Journal Optical Society of America B. 19(2):319-328.
  13. Jacobsen, R., et al., (1996), OpticsLett. 21:2011-2016.
  14. Büttgenbach, T.H., (1993), An improved solution for integrated array optics in quasioptical mm and submm receivers: The hybrid antenna, IEEE Trans. Microwave Theory and Techniques. 41(10):1750-1761.
  15. Fernandes, C.A., and Fernandes, J.G., (1999), Shaped dielectric lenses for wireless millimeter-wave communications, IEEE Antennas and Propagation Magazine. 41(5):141-152.
  16. Chantraine-Barès, B., Sauleau, R., Le Coq, L., and Mahdjoubi, K., (2005), A new accurate design method for millimeter-wave homogeneous dielectric substrate lens antennas of arbitrary shape, IEEE Trans. Antennas and Propagation. 53(3):1069-1075.
  17. Silveirinha, M.G.M.V., and Fernandes, C.A., (2000), Shaped double-shell dielectric lenses for wireless millimeter wave communications, Proc.IEEE AP-S Int. Symp. Dig. Salt Lake City, pp.1674-1677.
  18. Godi, G., Sauleau, R., and Thouroude, D., (2006), Single- and double-shell shaped lens antennas with asymmetrical radiation characteristics, Proc. European Conf. Antennas and Propagation (EuCAP). Nice.
  19. Greenwood, A.T., and Jin, J.-M., (1999), A field picture of wave propagation in inhomogeneous dielectric lenses, IEEE Antennas and Propagation Magazine. 41(5):9-18.
  20. Pasqualini, D., and Maci, S., (2004), High-frequency analysis of integrated dielectric lens antennas, IEEE Trans. Antennas Propag. 52(3):840-847.
  21. Neto, A., Pasqualini, D., Toccafondi, A., and Maci, S., (1999), Mutual coupling between slots printed at the back of elliptical dielectric lenses, IEEE Trans. Antennas and Propagation. 47(10):1504-1507.
  22. Pavasic, A.P., del Rio, D.L., Mosig, J.R., and Eleftheriades, G.V., (2006), Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas, IEEE Trans. Antennas and Propagation. 54(2):604-613.
  23. Shlager, K.L., and Schneider, J.B., (1995), A selective survey of the finite-difference time-domain literature, IEEE Antennas Propagation Magazine. 37(4):39-57.
  24. Godi, G., Sauleau, R., and Thouroude, D., (2005), Performance of reduced size substrate lens antennas for millimetre-wave communications, IEEE Trans. Antennas and Propagation. 53(4):1278-1286.
  25. Van der Vorst, M.J.M., and de Maagt, P.J.I., (2002), Efficient body of revolution finite-difference time-domain modeling of integrated lens antennas, IEEE Microw. Wireless Compon. Lett. 12(7):258-260.
  26. Hower, G.L., Olsen, R.G., Earls, J.D., and Schneider, J.B., (1993), Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects, IEEE Trans. Antennas and Propagation. 41(7):982-986.
  27. Boriskin, A.V., Boriskina, S.V., Nosich, A.I., Benson, T.M., Sewell, P., and
    Altintas, A., (2004), Lens or resonator? – electromagnetic behaviour of an extended hemielliptical lens for a sub-mm wave receiver, Microwave Optical Techn. Letters. 43(6):515-158.
  28. Boriskin, A.V., Boriskina, S.V., and Sauleau, R., (2006), Exact near fields of 2-D models of extended hemielliptic lenses made of rexolite, quartz and silicon, Proc. Int. Conf. Math Methods in EM Theory (MMET*06). Kharkiv, pp.109-111.
  29. Muller, C., (1969), Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin: 350 ð.
  30. Sirenko, Y.K., Pazynin, V.L., Vyazmitinova, A.I., and Sirenko, K.Y., (2003), Compact obstacles in free space: virtual boundaries for scalar and vector ‘open’ initial boundary-value problems in electromagnetic wave scattering theory, Electromagnetic Waves and Electronic Systems. 8(11&12):33-54 (in Russian).
  31. Rokhlin, V., (1990), Rapid solution of integral equations of scattering theory in two dimensions, J. of Computational Physics. 86:414-439.
  32. Wang, L., Allex Cox, J., and Friedman, A., (1998), Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the Nystrom method,
    J. Optical Soc. America A. 15:92-100.
  33. Boriskina, S.V., Benson, T.M., Sewell, P., and Nosich, A.I., (2004), Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization, J. Optical Soc. America A. 21(3):393-402.
  34. Berenger, L.-P., (1996), Perfectly matched layer for the FDTD solution of wave-structure interaction problem, IEEE Trans. Antennas Propag. 44(1):110-118.
  35. Nosich, A.I., (1999), MAR in wave-scattering and eigenvalue problems: foundations and review of solutions, IEEE Antennas and Propagation Magazine. 41(3):34-49.
  36. Gardner, M., (1965), Mathematical games, Scient. American. 213(3):222-232.
  37. Amini, S., and Kirkup, S.M., (1995), Solutions of Helmholtz equation in the exterior domain by elementary boundary integral methods, Journal Computational Physics. 118:208-221.
  38. Gmachl, C., Capasso, F., Narimanov, E.E., Nöckel, J.U., Stone, A.D., Faist, J.,
    Sivco, D.L., and Cho, A.Y., (1998), High-power directional emission from microlasers with chaotic resonators, Science. 280:1556-1564.
  39. Wainshtain, L.A., (1966), Open resonators and open waveguides, Sov. Radio, Moscow: 475 p. (in Russian).
  40. Otero, P., Alvarez-Melcon, A., Zurcher, J.-F., and Mosig, J.R., (1998), A microstrip-coupled slot-loop antenna for integrated receivers in the millimeter-wave band, Microwave & Optical Technol. Lett. 18(2):91-95.
  41. Kobayashi, H., and Yasuoka, Y., (2001), Receiving Properties of Extended Hemispherical Lens Coupled Slot Antennas for 94-GHz Millimeter Wave Radiation, Electronics Communications in Japan, 84(6):32-40.


pages 1-26

Back