
1
I
c
p
i
m
[
z
m
C
t
U
t
i
�

w
r
a
t
p
t
(
c
t
p
i
e

g
t
d
n
s
p
s
t

544 J. Opt. Soc. Am. A/Vol. 27, No. 3 /March 2010 Sirenko et al.
Modeling and analysis of transients in periodic
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In this paper we represent a number of new physical results obtained using time domain methods and based
on equivalent replacement of initially open electrodynamic problems with closed ones. These results prove the
high efficiency and reliability of the approach, being grounded in our companion paper in this issue. © 2010
Optical Society of America
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. INTRODUCTION
n [1] we have built a system of exact absorbing boundary
onditions for correct and effective truncation of the com-
utational domain of 2-D initial boundary-value problems
n the theory of gratings. This result allows us to imple-

ent equivalent replacement of initially open problems
formulas (3) in [1]] with closed ones. Standard discreti-
ation of these closed problems with the finite-difference
ethod [2] using a uniform rectangular mesh attached to
artesian coordinates g= �y ,z� leads to explicit computa-

ional schemes with uniquely defined mesh functions
�j ,k ,m��U�yj ,zk , tm� (from here on we use the same no-

ation as in [1]). The approximation error is O�h̄2�, h̄
s the mesh width in spatial coordinates, l̄= h̄ /2 for
=maxg�QL

�ε�g���g���2 or l̄� h̄ /2 for ��2 is the mesh
idth in time variable t, yj= jh̄, zk=kh̄, and tm=ml̄. The

ange of j, k, and m integers depends on the size of QL
reas and the length of interval �0;T� of the observation
ime t: gjk�QL and tm� �0;T�; gjk= �yj ,zk�. The condition
roviding uniform boundedness of the approximate solu-
ions U�j ,k ,m� with decreasing h̄ and l̄ is met [formula
1.50) in [3]]. Hence, in view of [4], the finite-difference
omputational schemes are stable, and the mesh func-
ions U�j ,k ,m� tend to solutions U�gjk , tm� of original
roblems. The relevant test problems’ solutions and other
ndependent results serve to confirm the statement (for
xample, Section 4.6.1 in [3]).

Nonlocal and local absorbing conditions derived for the
rating problems were tested to determine that errors in-
roduced by their implementation into explicit finite-
ifference schemes of the second approximation order do
ot exceed the standard sampling error. They are much
maller than the errors caused by the use of classical ap-
roximate absorbing boundary conditions [5,6] of the first,
econd, and third approximation orders. Also, in contrast,
hey exhibit almost no growth with time t. We make a
1084-7529/10/030544-9/$15.00 © 2
pecial emphasis of this point because long-duration time
ntervals are required for trustworthy analysis in the
esonant case.

. ELECTRODYNAMIC CHARACTERISTICS
F GRATINGS
nalysis of infinite single-period gratings rests on the nu-
erical solution of problems of type (36) from [1]. The

ransfer to finite domain of analysis QL is assisted by ex-
ct absorbing conditions (41), (42) from [1] (see also Fig. 2
n [1]).

Let us represent the total field U�g , t� in the form
�g , t�=Ui�g , t�+Us�g , t�; g�A and U�g , t�=Us�g , t�; g�B
here Ui�g , t� is the field produced in the channel R by

ome sources F̃�g , t�, �̃�g�, and �̃�g�. Then [see formulas
4) and (44) in [1]],

Us�g,t� = �
n=−�

�

un�z,t��n�y�and

Ui�g,t� = �
n=−�

�

vn�z,t��n�y�; t � 0. �1�

�g , t�=Ex�g , t� or U�g , t�=Hx�g , t� depending whether the
eld is E- or H-polarized. In domain LQ=A�B [see for-
ulas (1.5) and (1.7) in [3]],

�	Hy

Ey

� �t = � 	0

�1
�U

�z
, �	Hz

Ez

� �t

= ± 	0
�1

�U

�y
; 	E-case

H-case
 . �2�

hen [cf. the representation (1)],
010 Optical Society of America
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	Hy�z�
s

Ey�z�
s 
 = �

n=−�

�

un
y�z��z,t��n

y�z��y�,

	Hy�z�
i

Ey�z�
i 
 = �

n=−�

�

vn
y�z��z,t��n

y�z��
�; 	E-case

H-case
 . �3�

he spatial–temporal amplitudes un�z , t�, vn�z , t�, etc., in
he representations (1) and (3) are also called the evolu-
ionary basis elements of the corresponding signals [7,8].
hey fully describe the dynamics of the Us�g , t� �U�g , t��
nd Ui�g , t� pulsed waves propagating along the Floquet
hannel as well as their mode and spectral contents.

In QL domain, the simulated process dynamics is esti-
ated on the time dependences U�g , t�, referring to par-

icular points g�QL as well as the point set QL as a
hole. In the latter case, current values of the complex
w
s
s

R
c
m
i
c
f
(

W
o
=
=

n=−�
uantities U�g , t� are specified by the color of pixels (spa-
ial mesh cells) throughout the computational domain QL.

Let us attach domains A and B to the local coordinate
ystem gj= �yj ,zj�0�; j=1,2, and boundary Lj lies in plane
j=0 (see Fig. 2 in [1]). Then, starting from the values on
he boundary Lj, the diagonal transport operator Z0→zj

�t�
see Section 3 in [1]) will calculate the spatial–temporal
mplitudes u�zj , t�= �un�zj , t�� for any zj�0 section of the
orresponding regular channel R. This means that [see
lso (1)–(3)] any electrodynamic characteristic of the grat-
ng is defined by amplitude sets ��un�zj , t���zj=0; j=1,2 of
he secondary pulsed field Us�gj , t� on the virtual bound-
ries Lj.
Now let the grating be excited by a pulsed wave

p
i �g1 , t�=vp�z1 , t��p�y1� coming from area A; QL domain
as no current sources. In this case relationship
P1
s + P2

s + P1
i�s

1

+
1

2

�

�t�QL

��0��H� �2 +
�

�0
�E� �2�dg

2

+
1

�0
�

QL

��E� �2dg

3

= − P1
i

�4�
ith �dg=dydz� governs the balance of instant powers of
he electromagnetic field. Namely, the instant power ar-
iving at QL across the boundary L1 is the sum of total
nstant power (1) radiated across Lj boundaries into LQ
omain, instant power (2) accumulative in the QL do-
ain, and instant accepted power (3). Here,

Pj
s�i��t� =

Lj

��E� s�i� � H� s�i�� · n� j�dyj,

P1
i�s�t� =

L1

���E� s � H� i� + �E� i � H� s�� · n� 1�dy1,

� j is the outward normal to QL domain at the boundary

j, and E� s�i� and H� s�i� are the electric and magnetic fields
f the waves Us�g , t� �Ui�g , t�� in domains A and B.

The amplitude–frequency characteristics f̃�k� (where
=2� /; Re k�0, Im k=0 is the wavenumber or some fre-
uency parameter or simple frequency, and  is the free
pace wavelength) come from the time characteristics f�t�
y virtue of integral transformation
f̃�k� =
0

T

f�t�eiktdt ↔ f�t�, �5�

here T is the upper limit of the interval �0;T� of the ob-
ervation time t, and for all t�T, the function f�t� is as-
umed to be zero.

The frequency domain traditional characteristics

np
AA�k� and Tnp

BA�k� (see, for example, [9–11]) represent the
onversion coefficients. The former indicates how the pth
ode incident from part A of Floquet channel R converts

nto the nth reflection mode (synonymous with reflection
oefficient). The latter shows how the pth mode arriving
rom domain A transforms into the nth mode in domain B
transition coefficient). Specifically

Rnp
AA�k� = � ũn�z1,k�

ṽp�z1,k� �
z1=0

, Tnp
BA�k� =

�ũn�z2,k��z2=0

�ṽp�z1,k��z1=0
. �6�

hen the grating is excited by a propagating �Im �p=0�
r damped �Im �p�0� monochromatic wave Ũp

i �g ,k�
exp�i��py−�p�z−L1��� the total field in domain QL
A�B is ([3])
Ũ�g,k� = �Ũp
i �g,k� + �

n=−�

n=�

Rnp
AA exp�i��ny + �n�z − L1���; g � A

�
n=�

Tnp
BA exp�i��ny − �n�z + h + L2���; g � B� , �7�
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nd coefficients Rnp
AA�k� and Tnp

BA�k� are related according
o [12]

�
n=−�

�

��Rnp
AA�2 + �Tnp

BA�2�	Re �n

Im �n



= 	Re �p + 2 Im Rpp
AA Im �p

Im �p − 2 Im Rpp
AA Re �p


 −
k2�0

l 	W1

W2

 . �8�

ere, �n=2���+n� / l, �n=�k2−�n
2 (Re �n�0 and

m �n�0), and

W2 = 	+

− 

QL

���0�H� �2 − ��0�E� �2�dg,

�0 = 	 	0
2

	0
−2
 ; 	E-case

H-case
 .

rovided Im �p=0, values

W = W1

k2�0

l�p
=

k�0

l�p


QL

��0�E� �2dg, Wnp
R = �Rnp

AA�2
Re �n

�p
,

Wnp
T = �Tnp

BA�2
Re �n

�p
�9�

re relative parts of energy lost by absorption and given
o the open channels (each propagating mode of Floquet
hannel), taking it away from domain QL.

The first term in the upper equation in relations (7) cor-
esponds to an incident wave. The infinite series for zones

and B determine the secondary (scattered) field. The
erms of these series are usually referred to as partial
omponents of the spatial spectrum of the structure or as
patial (diffraction) harmonics of a scattered field. Com-
lex amplitudes Rnp

AA and Tnp
BA of spatial harmonics com-

osing the diffraction field in reflection �A� and transmis-
ion �B� zones are complicated functions of k and �, as
ell as of geometry and material parameters of the grat-

ng. Every harmonic with Im �n=0 and Re �n�0 is a ho-
ogeneous plane wave propagating away from the grat-

ng at the angle �n=−arcsin��n /k� in the reflection zone
nd at the angle �n=�+arcsin��n /k� in the grating’s
ransmission zone (all the angles are measured in the y0z
lane counterclockwise from the z axis; see Fig. 2 in [1]).
ngle �p

i =arcsin��p /k� is an angle of incidence of the ex-
itation wave Ũp

i �g ,k�. It is obvious that the direction of
ropagation of the homogeneous harmonics of the second-
ry field depends on their number n and on the values of
and �p

i . The channel corresponding to the nth harmonic
e will call “open” if Im �n=0.
The angle between directions of propagation of the pri-
ary and the minus mth reflected plane wave �p

i −�−m
2� is determined from the equation kl sin��p

i −��cos �
��p+m�. Particularly, at �=0 or at

kl sin��p
i � = ��p + m� �10�

he corresponding harmonic propagates toward the inci-
ent wave. The creation of such a nonspecular reflecting
ode is called autocollimation.
In following sections we will see how the characteristics
isted above make it possible to study the physics of reso-
ant wave scattering on various periodic gratings. The
nite-difference method is one of the most versatile meth-
ds in electrodynamics, and the use of exact absorbing
onditions makes it one the most reliable also.

. REFLECTIVE GRATINGS
he structure of a reflective grating field can be effec-

ively controlled by a few geometrical and (or) constitutive
arameters [9–12]. Effects that come to light in modeling
nd analysis of these gratings are of great interest in a
ariety of practical applications. As a rule their imple-
entation does not take long, but it means new optical

nd spectroscopic devices, radar and antenna units, solid
tate and vacuum electronics applications, and new
rends in high-power electronics. Some effects of that na-
ure will be discussed below. We emphasize that they all
an be extracted from commonly used reflective gratings
f ordinary geometry, which are conventional dispersive
nd selective components in both optical and radio wave-
engths.

Let an echelette grating as depicted in Fig. 1(a) be illu-
inated by H-polarized pulsed wave U0

i �g , t�
v0�z , t��0�y�; g= �y ,z��A such that: �=0,

ig. 1. (a) Echelette geometry and (b) its electrodynamical char-
cteristics in the frequency band 1.4�k�4.2: H-polarization,
i =0 ��=0�, l=4.02, �=67.5°, L =8.4.
0 1
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v0�L1,t� = 4
sin��k�t − T̃��

�t − T̃�
cos�k̃�t − T̃����T̄ − t� = F1�t�;

�k = 0.7, T̃ = 50, T̄ = 100.

arameters k̃, �k, T̃, and T̄ establish the central fre-
uency of the signal U0

i �g , t�, its spectral bandwidth
k̃±�k�, delay time [the moment when the principal part
f the pulse U0

i �g , t� crosses boundary L1], and duration.
he short notation for signal U0

i �g , t� is

U0
i �g,t�: � = 0; v0�L1,t� = F1�t�; k̃, �k = 0.7,

T̃ = 50, T̄ = 100. �11�

aving solved the corresponding initial boundary-value
roblems for any time 0� t�T; T=500, we can obtain the
lectrodynamical characteristics of the structure [see Fig.
(b)] in the frequency bands 1.4�k�2.8 [the central fre-
uency of signal (11) is k̃=2.1] and 2.8�k�4.2 �k̃=3.5�.
hy do we halve the analyzed frequency interval 1.4�k
4.2? Because free oscillation field U�g , t�, g�QL, t� T̄

ets rid of the contribution from the threshold effect tak-
ng place at one of the threshold points kn

±= ± ��n� of the
rating: k±1

+ �1.56 (for k̃=3.5) or k±2
+ �3.13 (for k̃=2.1).

In frequency band 1.7�k�2.0 and beyond point k±1
+

1.56 (where the first high-order spatial propagating
armonics appear), the echelette grating manages to con-
entrate over 98% of the input energy delivered by a nor-
ally falling H-polarized plane wave Ũ0

i �g ,k� in one of
hese harmonics (the minus first one) (see Fig. 1(b)). For
hese k values, the departure angle �−1=−arcsin��−1/k�
f R−10

AA �k�-amplitude harmonic from the grating is �−1
66.8° to �−1=51.4°. Beyond the second threshold point

±2
+ �3.13 a substantial part of the incident energy is
iven to the minus second spatial harmonic. But its

−20
R �k� function does not grow as fast as W−10

R �k� does,
nd it cannot achieve values as high .
At the frequency k=2.89 all the energy is uniformly dis-

ributed between the principal and the minus first spatial
armonics [W−10

R �k�=W00
R �k�=0.5 and W10

R �k�=0; �0=0 and
−1=32.7°]. Compare with W10

R �k�=W00
R �k��0.49, W−10

R �k�
0.02, and �1=−31.2° at the frequency k=3.015. From an

symmetric echelette grating, we can also get symmetric
hannels to radiate the input energy. Thus W10

R �W−10
R

0.46, W00
R �k��0.08, and ��1= ±30.3° at the point k

3.098.
Let us consider a reflective grating under normal inci-

ence of E- or H-polarized quasi-monochromatic wave

0
i �g , t�. The energy fluxes directed to the side channels

an be visualized via the calculation of the spatial–time
istribution of Hz�g , t� or Ez�g , t� values corresponding to
he field U�g , t�; g�QL. Indeed, the excitation with a
uasi-monochromatic wave whose spectral amplitudes de-
rease rapidly as frequency k moves off k= k̃ makes it pos-
ible to minimize the angular widening of the side chan-
els. Then the z components of the incident wave field

0
i �g , t� and of the total field’s U�g , t� part traveling to-
ard it are equal to zero. Figure 2 plots the solutions of
he initial boundary-value problems of the echelette grat-
ng excited by the quasi-monochromatic wave

U0
i �g,t�: � = 0; v0�L1,t� = cos�k̃�t − T̃����T̄ − t� = F2�t�;

k̃, T̃ = 0.5, T̄ = 300 �12�

ith the central frequencies k̃=1.85 [Fig. 2(a)] and
=2.89 (Fig. 2(b)). Let us recollect (see above) that

−10
R �k��0.98 and �−1=57.7° at the frequency k=1.85,

nd W−10
R �k�=0.5 and �−1=32.7° at k=2.89. These �−1 val-

es are shown in those parts of Fig. 2 where the spatial
istribution of Ez�g , t� is plotted: g�QL, t=101. They give
sufficiently accurate picture of the orientation of side

hannels drawing energy away from the grating.
Reflective gratings excited by an oblique incident

sin �0
i =�0 /k�0� E- or H-polarized plane wave Ũ0

i �g ,k�
an concentrate most of the energy input into one of the
igh-order spatial harmonics Rn0

AA�k�exp�i��ny+�n�z
L1���, with n�0 of the secondary field Ũs�g ,k�=Ũ�g ,k�
Ũ0

i �g ,k�, g= �y ,z��A [see formula (7) and [9–11]]. The
ropagation direction of this harmonic according to the
ngle �n=−arcsin��n /k� is different from the direction of
he specular reflection wave R00

AA�k�exp�i��0y+�0�z−L1���,
0=−�0

i . If Wn0
R �k�=1, we say that a total nonspecular re-

ection effect takes place. Let n=−m and

W−m0
R �k� = 1, kl sin��0

i � = �m. �13�

f condition (13) holds [see also formula (10)] for some val-
es of k, it is said that the effect of total autocollimation
eflection takes place on the minus mth spatial harmonic,
mplying that all the energy is concentrated into the
lane wave traveling toward the incident wave Ũ0

i �g ,k�.
n the autocollimation regime �=m /2, the propagation
onstants �n of specular �n=0� and autocollimation �n
−m� harmonics coincide at the same time as �0=−�−m.
The effect of total or nearly total autocollimation reflec-

ion on the minus first spatial harmonic can be both
pread over a wide band and be retained within a narrow
and. For example, Fig. 3(b) shows that for geometry 1
he 0.85�k�1.85 bandwidth where WR �k��0.95

ig. 2. Echelette excitation by quasi-monochromatic pulsed
ave (12) with central frequency (a) k̃=1.85 and (b) k̃=2.89. Pa-

ameters Hx�g , t� and Ez�g , t� spatial distributions, g�QL at time
=101.
−10
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mounts up to 74%. In the first case, the effect is realized
ecause of low-Q oscillations of the first family in domain

[3,12], namely, the oscillations on TEM- or H01-waves
n d-wide parallel-plate waveguide segments. In the sec-
nd case, the responsibility for maintenance of the effect
ests on larger-Q oscillations of E0n-�n�1� or H0n-waves
n�2�. But in any case the limit value can be reached
nly when no more than two—the zeroth and the minus
rst—spatial harmonics propagate without attenuation

n the reflection zone of the periodic structure.
The data reported in Fig. 3 were obtained by studying

he grating response to excitation by the pulsed
-polarized wave

U0
i �g,t�: � = 0.5, v0�L1,t� = F1�t�, k̃ = 1.55,

�k = 0.75, T̃ = 50, T̄ = 100. �14�

he band 0.8�k�2.3, where spectral amplitudes of the
ignal (14) reach their maxima, does not include the

ig. 3. H-polarization; autocollimation reflection on the minus
rst spatial harmonic: (a) Grating geometry : L1=8.4; 1—l
4.02, h=1.0, d=2.02, ε=1; 2—l=4.02, h=1.28, d=1.62, ε=2); (b)
eflection efficiency: geometry 1, dashed curve; geometry 2, solid
urve.

ig. 4. Reflective grating excitation (geometry 2) by an H-p
=1.565, T̃=0.5, T̄=100: (a) The Hx�g , t� spatial distribution, g�
hreshold points k0
+=k−1

+ �0.782 and k1
+=k−2

+ �2.35. There-
ore in the free oscillation field U�g , t�; t�100, the oscilla-
ion on E01-waves in the grating with geometry 2 is clear
nough—we can see that from the Hx�g , t� spatial distri-
ution, g�QL at any time t�200. Evidently this oscilla-
ion is the only one characterized by high Q-factor whose
omplex eigenfrequency k̄ is under the segment 0.8�k
2.3 of the real axis k�0. It seems that this oscillation is

esponsible for the total autocollimation reflection at the
requency k=1.565 [see Fig. 3(b)]. This hypothesis is
ased on an analysis of the grating’s response to the exci-
ation by a quasi-monochromatic H-polarized wave

0
i �g , t� with the central frequency k̃=1.565 (see Fig. 4).
he spectral amplitudes of function U���=Re U�g1 , t�,
= t−100�0 are at their maxima in the small vicinity of
he point k=1.569; its envelope f��� obeys the equation
���= ±3.12 exp�−0.0088��. This means (see [13]) that free
scillation on the E01-waves [see Fig. 4(a)] fits the eigen-
requency k̄�1.569− i0.0088.

Reflective gratings can be used as dispersive elements
o make effective polarization selection of signals. Let us
efer to the situation reported in Fig. 5. At the frequency
=0.775, 99% of the input energy is drawn toward the in-
ident plane wave when it is H-polarized and only 1%
hen the incident plane wave is E-polarized. At the fre-
uency k=1.005, the main channels of energy withdrawal
f E- and H-polarized waves are interchanged: W−10

R �k�
0.05 for H-polarization and W−10

R �k�=1.0 for
-polarization. At the frequency k=0.667, W−10

R �k�=0.92

ed quasi-monochromatic wave U0
i �g , t�: �=0.5; v0�L1 , t�=F2�t�;

the time t=205; (b) functions Re U�g1 , t� and U���.

ig. 5. Autocollimation reflection efficiency on the minus first
patial harmonic: H-polarization, dashed curve; E-polarization,
olid curve; l=2�, h=4.3, d=3.8, ε=2.
olariz
Q at
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or both polarizations. The portion of energy contributed
o the specular reflection spatial harmonics is by virtue of
he equation W−10

R �k�+W00
R �k�=1.0: in the band 0.5�k

1.5, only the principal and the minus first harmonics of
he secondary field Ũs�g ,k� travel without attenuation in
omain A.
A grating formed by thin metal strips lying on a dielec-

ric substrate backed by a perfectly conducting screen
ully separates polarizations when the autocollimation re-
ection regime happens on the minus first spatial har-
onic. Figure 6 shows that at k=1.565 all the energy de-

ivered by an E-polarized wave goes to the minus first
patial harmonic �W−10

R �k�=1.0�. When the incident wave
s H-polarized all the energy concentrates into the specu-
ar reflection harmonic �W−10

R �k�=0.0�. At k=2.0 the sepa-
ation of polarizations is not so fine. Here W−10

R �k�=1.0 in
he case of H-polarization of the field and W−10

R �k�=0.02
W00

R �k�=0.98� in the E-case.

. GRATINGS IN A PULSED WAVE FIELD
t is evident that complete analytic description of pulse
eformations in regular and irregular Floquet channels is
mpossible without proper computational work. The fig-
res obtained must be adequately interpreted. A treat-
ent of this kind originated in [3,14]. Here we discuss

ome recent results based on the method reported in [1].
Four E-polarized sinusoidal plane waves Ũ0

i �g ,k�
exp�−ikz�, Ũ0�g ,k�=exp�ikz�, Ũ1�g ,k�=−exp�iky�, and

˜
−1�g ,k�=−exp�−iky� traveling in free space result in the
eld Ẽx�g ,k� whose null surfaces at k=k±1

+ =2� / l can be
rought into coincidence with the surface S=Sx� ��x�
�� of a symmetric echelette grating (see Fig. 1(a),
=45°). This means that the total field originating when

ig. 6. Autocollimation reflection efficiency on the minus first
patial harmonic: (a) Grating geometry (l=4.02, h=1.42,
=2.78, ε=2, perfectly conducting strip thickness is 0.04,
1=8.4); (b) reflection efficiency: H-polarization, dashed curve;
-polarization, solid curve.
he echelette grating is excited by the wave Ũ0
i �g ,k� coin-

ides (everywhere above the contour Sx) with the field
˜ �g ,k�=Ũ0

i �g ,k�+�n=0,1,−1Ũn�g ,k�. In this case waves
˜

n�g ,k�, n=0, ±1 play the parts of principal, plus first,
nd minus first spatial harmonics of the secondary field

˜ s�g ,k�=Ũ�g ,k�−Ũ0
i �g ,k�. Usually in this way a reason is

iven for an explicit analytic solution of a scattering prob-
em in the frequency domain; the existence of the solution
s attributed to the so-called geometrical resonances [11].
ater we will see what this geometrical resonance (a fre-
uency domain effect) can tell us about the solution of the
orresponding scattering problem in the time domain.

Let us assume that a symmetric echelette grating is ex-
ited by E-polarized quasi-monochromatic wave U0

i �g , t�:
=0, v0�L1 , t�=F2�t�, k̃=1.563�k±1

+ , T̃=0.5, T̄=200 (see
igs. 7 and 8). We will compare the spatial–temporal am-
litudes of the signal U0

i �g , t� and the principal spatial
armonics Un�g , t�=un�z , t��n�y�, n=0, ±1 due to this sig-
al in the reflection zone of the grating. Function v0�L1 , t�,
hose related spectral amplitudes do not exceed 0.3 be-
ond the narrow frequency band 1.54�k�1.586, has a
imple envelope and vanishes for all t� T̄. The effective
patial duration of the signals U0�g , t� and U0

i �g , t� is prac-
ically the same, but the amplitude of U0�g , t� gradually
ncreases by action of the perturbation source. The main
art of the pulse u0�L1 , t� is followed by a short and fast
ecaying tail. The tails of the pulses u±1�L1 , t� are more
owerful, which is probably due to the plus and the minus
rst harmonics being the principal components of the free
scillation field complying with the eigenfrequency k̄

ig. 7. Excitation of a symmetric echelette (�=45°, l=4.02,
1=7.8) by a normally incident E-polarized quasi-monochromatic
ave U0

i �g , t�. The spatial–temporal amplitudes are shown for
he U0

i �g , t� wave and the principal spatial harmonics of the sec-
ndary field Us�g , t� on the virtual boundary L .
1
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Re k̄ is in close proximity to the threshold point

±1
+ �1.563).
The main carriers of the Hz�g , t� component of the field

�g , t� are U±1�g , t� waves. The Hy�g , t� main carriers are

ig. 9. Symmetric echelette excitation by a normally incident
-polarized Gaussian pulse U0

i �g , t�: (a) The spatial–temporal
nd the spectral amplitudes are shown for the U0

i �g , t� wave and
he principal spatial harmonics of the secondary field Us�g , t� on
he virtual boundary L1; (b),(c) the Ex�g , t� spatial distribution,
�QL, t=26 (forced oscillations mode) and t=55 (free oscillations
ode).

ig. 8. (Complement to Fig. 7). Ex�g , t�, Hy�g , t� and Hz�g , t� spa-
ial distributions, g�QL, t=189.75.
0
i �g , t� and U0�g , t� waves. The spatial distribution of val-
es Ex�g , t�, g�QL corresponding to the field U�g , t� is
overned equally by all these waves. At some points in
ime there is practically no difference with the distribu-
ion (at k=k±1

+ ) due to the interference of sinusoidal waves
˜

0
i �g ,k� and Ũn�g ,k�, n=0, ±1. The distinctions decrease
onotonically with time t, provided that the central fre-

uency k̃ of quasi-monochromatic wave U0
i �g , t� (with a

ufficiently large spatial duration T̄) coincides exactly
ith k±1

+ . Thus in this situation, the principle of limiting
mplitude [3] is realized, and the transient gradually
akes on properties of the established process.

Now let us excite a symmetrical echelette grating with
n E-polarized wideband signal U0

i �g , t� [see Fig. 9(a): the
andwidth is given by 0.4�k�2.8, where normalized
pectral amplitudes of the function v0�L1 , t� are no less
han 0.1]. The spectral amplitudes of the pulses u0�L1 , t�
nd v0�L1 , t� differ little from each other everywhere ex-
ept in the frequency interval beyond the threshold point

±1
+ . Amplitudes of pulses u±1�L1 , t� are at their maxima
n this frequency interval. As in the case of a grating ex-
itation by a monochromatic signal U0

i �g , t� all features of
he functions un�L1 , t� and �ũn�L1 ,k�� originate from the
hreshold effect in the frequency domain and the redistri-
ution of the input energy among the spatial harmonics of
he field Ũs�g ,k�.

ig. 10. Mode-frequency exfoliation of a superbroadband pulse:
a) Grating geometry (�=60°, l=4.02, L1=8.0); (b) amplitudes of
he incident E-polarized pulsed wave U0

i �g , t� ��=0�; (c) energy
istribution among spatial harmonics of the field Ũs�g ,k� in the
tructure’s reflection zone.
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Now consider the phenomenon of the strong conversion
f the sinusoidal H01-waves into the H0m-waves, m�1
hat takes place on inclined H-plane plugs in rectangular
aveguides (see Fig. 12 in [15]). This can be interpreted

n superwideband signal terms in the following manner.
he pulsed H01-wave with spectral amplitudes evenly dis-

ributed across the range k2�k�kM (km is the H0m-wave
utoff) is reflected from the plug to produce a series of
ulsed H0m-waves, m=2, . . . ,M−2, each occupying its
wn band km�k�km+2 in the range. In this band, func-
ion Wm1�k� describing the input energy portion trans-
erred to the reflected H0m-wave at first monotonically in-
reases from zero up to maxk Wm1�k�=Wm1�km+1��1, then
onotonically decreases to Wm1�km+2��1.
Phenomena of this kind appear during scattering of su-

erwideband TE01-pulses on cone-shaped plugs in circu-
ar and coaxial waveguides [16] and also during scatter-
ng of E-polarized pulsed waves of normal incidence on a
ymmetric metal echelette grating with obtuse teeth (see
igs. 10 and 11). The result is that a superwideband pulse
f one type [for echelette gratings, it is the pulsed wave

0
i �g , t�] changes into an ordered sequence of narrowband
ulses of other types [pulsed spatial harmonics U �g , t�;

ig. 11. (Complement to Fig. 10). Amplitudes of high-order spa-
ial harmonics of the field Us�g , t� on the virtual boundary L1.
n

n��1]. This effect is called modal frequency exfoliation of
superwideband signal. Particular bands occupied by

ach pair U±n�g , t� of pulsed waves and the Wn0�k�
W−n0

R �k�+Wn0
R �k� distributions across these bands re-

ain basically the same as in the case of H0n-waves of a
ectangular waveguide. The reflected pulses U±n�g , t�
ith a higher �n� have a higher central frequency

n�k±�n+1�
+ . This can be seen clearly in the character of

he oscillations of the spatial–temporal amplitudes
±n�z , t� as a function of t (see Fig. 11).
In the case of H-polarization the effect is not so obvious.

ormation of pairs U±n�g , t� of the reflected pulses fitting
he above-given notion of modal frequency exfoliation
tarts only beyond the point k=k±3

+ —the grazing point for
he plus and minus third spatial harmonics of the field
˜ s�g ,k�. But now the top value of the energy characteris-
ic Wn0�k� cannot reach over a 0.85 level for any of the
airs. Distinctions from the E-case are mainly due to dif-
erent intensities of the threshold phenomenon (Wood’s
nomalies) in the vicinities of the first three branch points
=k±n

+ .

. CONCLUSION
ome physical results obtained by the method described

n [1] are briefly depicted in this paper. These results con-
ern spatial–temporal and spatial–frequency field trans-
ormations in the case of resonant wave scattering. They
nderscore the potentialities of this method and its pros-
ects as a research tool for fundamental and application-
riented problems of physics and optics.
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