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1. INTRODUCTION

In [1] we have built a system of exact absorbing boundary
conditions for correct and effective truncation of the com-
putational domain of 2-D initial boundary-value problems
in the theory of gratings. This result allows us to imple-
ment equivalent replacement of initially open problems
[formulas (3) in [1]] with closed ones. Standard discreti-
zation of these closed problems with the finite-difference
method [2] using a uniform rectangular mesh attached to
Cartesian coordinates g={y,z} leads to explicit computa-
tional schemes with uniquely defined mesh functions
UG,k,m)=U(y;,z2},tn,) (from here on we use the same no-
tation as in [1]). The approximation error is O(h?), h
is the mesh width in spatial coordinates, [=h/2 for
ﬁ:maxgEQL[s(g)M(g)]<2 or [<h/2 for 9=2 is the mesh
width in time variable ¢, yj=j}_L, zk=ki_z, and tm=m7. The
range of j, k, and m integers depends on the size of Q;,
areas and the length of interval [0; 7] of the observation
time #: gj, €Q and ¢, [0;T]; gir=1y;,2r}- The condition
providing uniform boundedness of the approximate solu-
tions U(j,k,m) with decreasing & and 7 is met [formula
(1.50) in [3]]. Hence, in view of [4], the finite-difference
computational schemes are stable, and the mesh func-
tions U(j,k,m) tend to solutions U(gj,t,) of original
problems. The relevant test problems’ solutions and other
independent results serve to confirm the statement (for
example, Section 4.6.1 in [3]).

Nonlocal and local absorbing conditions derived for the
grating problems were tested to determine that errors in-
troduced by their implementation into explicit finite-
difference schemes of the second approximation order do
not exceed the standard sampling error. They are much
smaller than the errors caused by the use of classical ap-
proximate absorbing boundary conditions [5,6] of the first,
second, and third approximation orders. Also, in contrast,
they exhibit almost no growth with time ¢. We make a
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special emphasis of this point because long-duration time
intervals are required for trustworthy analysis in the
resonant case.

2. ELECTRODYNAMIC CHARACTERISTICS
OF GRATINGS

Analysis of infinite single-period gratings rests on the nu-
merical solution of problems of type (36) from [1]. The
transfer to finite domain of analysis Qy, is assisted by ex-
act absorbing conditions (41), (42) from [1] (see also Fig. 2
in [1D).

Let us represent the total field U(g,#) in the form
Ug,t)=Ul(g,t)+U%g,t); g <A and U(g,t)=U%g,t); g<B
where Ul(g,t) is the field produced in the channel R by
some sources F(g,t), dg), and @(g). Then [see formulas
(4) and (44) in [1]],

©

U(g,0) = 2, u,(z,t)py(y)and

n=-—x

©

Ulg,t)= >, v,(z,H)pa(y); t=0. (1)

n=-o

Ug,t)=E.(g,t) or U(g,t)=H,(g,t) depending whether the
field is E- or H-polarized. In domain ;Q=AUB [see for-
mulas (1.5) and (1.7) in [3]],

H, U [H
F d=F g l—, at
lgy + 7o 9z IZZ

:1¢9U E-case 0
== g’ H-case |’ 2)

Then [cf. the representation (1)],
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The spatial-temporal amplitudes u,(z,¢), v,(z,t), etc., in
the representations (1) and (3) are also called the evolu-
tionary basis elements of the corresponding signals [7,8].
They fully describe the dynamics of the U(g,t) (U(g,t))
and U(g,t) pulsed waves propagating along the Floquet
channel as well as their mode and spectral contents.

In Q; domain, the simulated process dynamics is esti-
mated on the time dependences U(g,?), referring to par-
ticular points g e Q; as well as the point set Q; as a
whole. In the latter case, current values of the complex
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quantities U(g,¢) are specified by the color of pixels (spa-
tial mesh cells) throughout the computational domain Q;..

Let us attach domains A and B to the local coordinate
system g;={y;,z;=0};j=1,2, and boundary L; lies in plane
2;=0 (see Fig. 2 in [1]). Then, starting from the values on
the boundary L;, the diagonal transport operator Z, ., (¢)
(see Section 3 in [1]) will calculate the spatial-temporal
amplitudes u(z;,t)={u,(z;,t)} for any z;=0 section of the
corresponding regular channel R. This means that [see
also (1)—-(3)] any electrodynamic characteristic of the grat-
ing is defined by amplitude sets {u, zj,t)}|zj=0; j=1,2 of
the secondary pulsed field U®(g;,?) on the virtual bound-
aries L;.

Now let the grating be excited by a pulsed wave
U,(g1,t)=vp(21,8)up(y1) coming from area A; Q domain
has no current sources. In this case relationship

olE|’dg =- P} (4)
o Qr
_

with (dg=dydz) governs the balance of instant powers of
the electromagnetic field. Namely, the instant power ar-
riving at Qj, across the boundary L; is the sum of total
instant power (1) radiated across L; boundaries into ;Q
domain, instant power (2) accumulative in the Q; do-
main, and instant accepted power (3). Here,

Pj“"(t)= f (B9 x gsa)].ﬁj)dyj,
L;

Po(e) = J [((E* % EV+ (B % B -y,
Ly

7i; is the outward normal to Q; domain at the boundary

L;, and Es® and G50 are the electric and magnetic fields
of the waves U%(g,t) (U'(g,t)) in domains A and B.

The amplitude—frequency characteristics f(k) (where
k=2m/N\; Re k>0, Im £=0 is the wavenumber or some fre-
quency parameter or simple frequency, and \ is the free
space wavelength) come from the time characteristics f(¢)
by virtue of integral transformation

n=w

T
fik) = J fettdt — fit), (5)
0

where T is the upper limit of the interval [0;7"] of the ob-
servation time ¢, and for all ¢>T, the function f{(¢) is as-
sumed to be zero.

The frequency domain traditional characteristics
R‘;ﬁ(k) and Tfl?(k) (see, for example, [9-11]) represent the
conversion coefficients. The former indicates how the pth
mode incident from part A of Floquet channel R converts
into the nth reflection mode (synonymous with reflection
coefficient). The latter shows how the pth mode arriving
from domain A transforms into the nth mode in domain B
(transition coefficient). Specifically

ﬁn(zlrk) ﬁn(227k)|22=0

RAAR) = , Tolk) = (6)

51,(21,]@) 2,=0 Ep(zl’k)|zl=0 ‘

When the grating is excited by a propagating (ImI',=0)
or damped (ImI,>0) monochromatic wave ﬁ;(g,k)
=exp[i(®,y-Ip(z=L1))] the total field in domain Qg
=AUB is ([3])

Uig,k)+ >, Ratrexpli(®,y+T,(z-Ly)]; 8§ €A

n=-—o

Ulg,k) =

n=w

>, T8 expli(®,y - T,(z + h + Ly)];

n=-0o

; (7)
geB
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and coefficients R%‘(k) and Tfﬁ(k) are related according
to [12]

* Rel’
AA|2 BA|2 n
E [‘Rnp + |Tnp ]{Im Fn}

n=-—x

ReT, +2ImRAMImT, | £%By| W,
-— . @8
ImT,-2ImRy*ReT, I | W, 2

Here, ®,=27(®+n)/l, T,=\k*-®> (Rel,=0 and
ImT,=0), and

+ . -
Wy = {_ } (ol HI? - e50|E*1dg,
QL

77(2) E-case
Po= 72|’ | H-case|’

Provided Im I',=0, values

k2B, kB R Rel,
W=W,—— =" J ceolEldg, WE = |RAM?—"
T, 1T, J)q, r,
ReT,,
Wiy = Top P—— (9)

are relative parts of energy lost by absorption and given
to the open channels (each propagating mode of Floquet
channel), taking it away from domain Q..

The first term in the upper equation in relations (7) cor-
responds to an incident wave. The infinite series for zones
A and B determine the secondary (scattered) field. The
terms of these series are usually referred to as partial
components of the spatial spectrum of the structure or as
spatial (diffraction) harmonics of a scattered field. Com-
plex amplitudes R‘,:f and Tf; of spatial harmonics com-
posing the diffraction field in reflection (A) and transmis-
sion (B) zones are complicated functions of £ and ®, as
well as of geometry and material parameters of the grat-
ing. Every harmonic with ImI',=0 and ReI',>0 is a ho-
mogeneous plane wave propagating away from the grat-
ing at the angle a,=-arcsin(®,/k) in the reflection zone
and at the angle «,=w+arcsin(®,/k) in the grating’s
transmission zone (all the angles are measured in the y0z
plane counterclockwise from the z axis; see Fig. 2 in [1]).
Angle aé:arcsin(cbp/k) is an angle of incidence of the ex-

citation wave U;(g,k). It is obvious that the direction of
propagation of the homogeneous harmonics of the second-
ary field depends on their number n and on the values of
k and @,. The channel corresponding to the nth harmonic
we will call “open” if Im I',,=0.

The angle between directions of propagation of the pri-
mary and the minus mth reflected plane wave o —a_,
=2a is determined from the equation kIl sin(a;—a)cos o
=m(p+m). Particularly, at «=0 or at

kl sin(a) = m(p +m) (10)

the corresponding harmonic propagates toward the inci-
dent wave. The creation of such a nonspecular reflecting
mode is called autocollimation.
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In following sections we will see how the characteristics
listed above make it possible to study the physics of reso-
nant wave scattering on various periodic gratings. The
finite-difference method is one of the most versatile meth-
ods in electrodynamics, and the use of exact absorbing
conditions makes it one the most reliable also.

3. REFLECTIVE GRATINGS

The structure of a reflective grating field can be effec-
tively controlled by a few geometrical and (or) constitutive
parameters [9-12]. Effects that come to light in modeling
and analysis of these gratings are of great interest in a
variety of practical applications. As a rule their imple-
mentation does not take long, but it means new optical
and spectroscopic devices, radar and antenna units, solid
state and vacuum electronics applications, and new
trends in high-power electronics. Some effects of that na-
ture will be discussed below. We emphasize that they all
can be extracted from commonly used reflective gratings
of ordinary geometry, which are conventional dispersive
and selective components in both optical and radio wave-
lengths.

Let an echelette grating as depicted in Fig. 1(a) be illu-
minated by H-polarized pulsed wave f)(g,t)
=vo(z,t) mo(¥); g={y,z} € A such that: ®=0,

(®)

Fig. 1. (a) Echelette geometry and (b) its electrodynamical char-
acteristics in the frequency band 1.4<Fk<4.2: H-polarization,
ay=0 (©=0), [=4.02, y=67.5°, L;=8.4.
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sin[AR(t-T)] . . _
———————cos[k(t - D) Ix(T-1t) =Fy(t);
-1

vo(Ly,t) =4

Ak=0.7, T=50, T=100.
Parameters &, Ak, T, and T establish the central fre-
quency of the signal Uj(g,t), its spectral bandwidth

(E+AFk), delay time [the moment when the principal part
of the pulse Uj(g,?) crosses boundary L], and duration.
The short notation for signal Uj(g,?) is

Up(g,t): ®=0; voLy,t)=F(t); k, Ak=0.7,

T=50, T=100. (11)

Having solved the corresponding initial boundary-value
problems for any time 0 <¢<T; T=500, we can obtain the
electrodynamical characteristics of the structure [see Fig.
1(b)] in the frequency bands 1.4<k=<2.8 [the central fre-
quency of signal (11) is £=2.1] and 2.8<k<4.2 (E=3.5).
Why do we halve the analyzed frequency interval 1.4<#k
<4.2? Because free oscillation field U(g,t), g € Qr, t>T
gets rid of the contribution from the threshold effect tak-
ing place at one of the threshold points k;=+|®,| of the
grating: k%, ~1.56 (for k=3.5) or k1,~3.13 (for £=2.1).

In frequency band 1.7<k<2.0 and beyond point kI,
~1.56 (where the first high-order spatial propagating
harmonics appear), the echelette grating manages to con-
centrate over 98% of the input energy delivered by a nor-

mally falling H-polarized plane wave l~/'f)(g,k) in one of
these harmonics (the minus first one) (see Fig. 1(b)). For
these %k values, the departure angle a_;=-arcsin(P_;/k)
of R‘}ﬁ)(k)-amplitude harmonic from the grating is «_;
=66.8" to @_;=51.4". Beyond the second threshold point
ki,~3.13 a substantial part of the incident energy is
given to the minus second spatial harmonic. But its
WE,o(k) function does not grow as fast as W%,,(k) does,
and it cannot achieve values as high .

At the frequency £=2.89 all the energy is uniformly dis-
tributed between the principal and the minus first spatial
harmonics [Wl_ew(k)ngo(k)zo.S and Wlfo(k)zo; ap=0 and
a_1=32.7"]. Compare with WE (k)=WE (k)~0.49, WE (%)
~0.02, and a;=-31.2" at the frequency £=3.015. From an
asymmetric echelette grating, we can also get symmetric
channels to radiate the input energy. Thus Wi ~W¥~,
~0.46, W5 \(k)=0.08, and a;;=+30.3" at the point %
=3.098.

Let us consider a reflective grating under normal inci-
dence of E- or H-polarized quasi-monochromatic wave

g(g,t). The energy fluxes directed to the side channels
can be visualized via the calculation of the spatial-time
distribution of H,(g,¢) or E,(g,t) values corresponding to
the field U(g,t); g € Q. Indeed, the excitation with a
quasi-monochromatic wave whose spectral amplitudes de-

crease rapidly as frequency & moves off =% makes it pos-
sible to minimize the angular widening of the side chan-
nels. Then the z components of the incident wave field
Uj(g,t) and of the total field’s U(g,t) part traveling to-
ward it are equal to zero. Figure 2 plots the solutions of
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E, (g.1) H,(g.1) E (g.1)

(®)

Fig. 2. Echelette excitation by quasi-monochromatic pulsed

wave (12) with central frequency (a) £=1.85 and (b) £=2.89. Pa-
rameters H,(g,¢) and E,(g,t) spatial distributions, g € Q;, at time
¢=101.

the initial boundary-value problems of the echelette grat-
ing excited by the quasi-monochromatic wave

(g,t): ®=0; vo(Ly,t) = cos[k(t - T)IX(T - t) = Fo(t);

k, T=0.5, T=300 (12)

with the central frequencies 2=1.85 [Fig. 2(a)l and

£=2.89 (Fig. 2(b)). Let us recollect (see above) that
WE (k)>0.98 and a_,=57.7" at the frequency k=1.85,
and W2 ,(k)=0.5 and a_;=32.7" at £=2.89. These a_, val-
ues are shown in those parts of Fig. 2 where the spatial
distribution of E,(g,?) is plotted: g € Q;, t=101. They give
a sufficiently accurate picture of the orientation of side
channels drawing energy away from the grating.
Reflective gratings excited by an oblique incident
(sin aB:CI)O/kaﬁO) E- or H-polarized plane wave ﬁé(g,k)
can concentrate most of the energy input into one of the
high-order spatial harmonics R%(k)exp[i(@ny+l"n(z
—L,))], with n#0 of the secondary field Us(g,k)=Ul(g,k)

—l%(g,k), g={y,z} € A [see formula (7) and [9-11]]. The
propagation direction of this harmonic according to the
angle «,=-arcsin(®,/k) is different from the direction of
the specular reflection wave R‘O‘(?(k)exp[i(q)ay +To(z=-Ly))],
a0=—af). If Wffo(k)= 1, we say that a total nonspecular re-
flection effect takes place. Let n=—m and

WE o(k)=1, Eklsin(ah)=mm. (13)

If condition (13) holds [see also formula (10)] for some val-
ues of &, it is said that the effect of total autocollimation
reflection takes place on the minus mth spatial harmonic,
implying that all the energy is concentrated into the

plane wave traveling toward the incident wave f]f)(g,k).
In the autocollimation regime ®=m/2, the propagation
constants I',, of specular (n=0) and autocollimation (n
=-m) harmonics coincide at the same time as ®y=-D_,,.

The effect of total or nearly total autocollimation reflec-
tion on the minus first spatial harmonic can be both
spread over a wide band and be retained within a narrow
band. For example, Fig. 3(b) shows that for geometry 1
the 0.85<k<1.85 bandwidth where Wflo(k)>0.95
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(®)

2.0 k
23.0 o,

1.0 1.5

514 314
Fig. 3. H-polarization; autocollimation reflection on the minus
first spatial harmonic: (a) Grating geometry : L,;=8.4; 1—I
=4.02, h=1.0,d=2.02,e=1; 2—1=4.02, h=1.28, d=1.62, ¢=2); (b)
reflection efficiency: geometry 1, dashed curve; geometry 2, solid
curve.

amounts up to 74%. In the first case, the effect is realized
because of low-Q oscillations of the first family in domain
G [3,12], namely, the oscillations on TEM- or Hj;-waves
in d-wide parallel-plate waveguide segments. In the sec-
ond case, the responsibility for maintenance of the effect
rests on larger-Q oscillations of Eg,-(n=1) or H,,-waves
(n=2). But in any case the limit value can be reached
only when no more than two—the zeroth and the minus
first—spatial harmonics propagate without attenuation
in the reflection zone of the periodic structure.

The data reported in Fig. 3 were obtained by studying
the grating response to excitation by the pulsed
H-polarized wave

Ui(g,t): ®=0.5, vo(Ly,t)=Fy(t), k=155,

Ak=0.75, T=50, T=100. (14)

The band 0.8<%k<2.3, where spectral amplitudes of the
signal (14) reach their maxima, does not include the
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0.6 0.9 12 k
56.4 33.7 246 0,
Fig. 5. Autocollimation reflection efficiency on the minus first

spatial harmonic: H-polarization, dashed curve; E-polarization,
solid curve; [=2m, h=4.3, d=3.8, £¢=2.

threshold points kj=k*;~0.782 and k]=k*,~2.35. There-
fore in the free oscillation field U(g,?); ¢ > 100, the oscilla-
tion on Ej;-waves in the grating with geometry 2 is clear
enough—we can see that from the H,(g,t) spatial distri-
bution, g € Q;, at any time ¢=200. Evidently this oscilla-
tion is the only one characterized by high Q-factor whose

complex eigenfrequency % is under the segment 0.8<Fk
< 2.3 of the real axis £ > 0. It seems that this oscillation is
responsible for the total autocollimation reflection at the
frequency k£=1.565 [see Fig. 3(b)]. This hypothesis is
based on an analysis of the grating’s response to the exci-
tation by a quasi-monochromatic H-polarized wave

f)(g,t) with the central frequency £=1.565 (see Fig. 4).
The spectral amplitudes of function U(7)=Re U(gq,t?),
7=t—100>0 are at their maxima in the small vicinity of
the point £=1.569; its envelope f(7) obeys the equation
f(7)=+3.12 exp(-0.00887). This means (see [13]) that free
oscillation on the Ey;-waves [see Fig. 4(a)] fits the eigen-

frequency % ~1.569—-:0.0088.

Reflective gratings can be used as dispersive elements
to make effective polarization selection of signals. Let us
refer to the situation reported in Fig. 5. At the frequency
k=0.775, 99% of the input energy is drawn toward the in-
cident plane wave when it is H-polarized and only 1%
when the incident plane wave is E-polarized. At the fre-
quency £=1.005, the main channels of energy withdrawal
of E- and H-polarized waves are interchanged: W{elo(k)
=0.05 for H-polarization and Wflo(k)=1.0 for
E-polarization. At the frequency £=0.667, W}_?m(k)=0.92

S ReU/(g.t)
0.0
U(t);t=1-100
1 | |
100 200 300 400 ¢
0 100 200 300 T
(a (b)

Fig. 4.

Reflective grating excitation (geometry 2) by an H-polarized quasi-monochromatic wave U%(g,t): ®=0.5; vy(Lq,t)=Fq(t);

k=1.565, T=0.5, T=100: (a) The H . (g,t) spatial distribution, g € Q;, at the time ¢=205; (b) functions Re U(g,¢) and U(7).
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o =0 ke
1= 0 : ; s,
\/ o==' »
\i € h (@)
—_

1.0

(®)
0.5

0.0

10 15 2.0 k

514 314 23.0 o,
Fig. 6. Autocollimation reflection efficiency on the minus first
spatial harmonic: (a) Grating geometry ([=4.02, h=1.42,
d=2.78, e€=2, perfectly conducting strip thickness is 0.04,
L,=8.4); (b) reflection efficiency: H-polarization, dashed curve;
E-polarization, solid curve.

for both polarizations. The portion of energy contributed
to the specular reflection spatial harmonics is by virtue of
the equation W% (k)+WE (k)=1.0: in the band 0.5<k
< 1.5, only the principal and the minus first harmonics of

the secondary field U*(g,k) travel without attenuation in
domain A.

A grating formed by thin metal strips lying on a dielec-
tric substrate backed by a perfectly conducting screen
fully separates polarizations when the autocollimation re-
flection regime happens on the minus first spatial har-
monic. Figure 6 shows that at £=1.565 all the energy de-
livered by an E-polarized wave goes to the minus first
spatial harmonic (W{em(k)=1.0). When the incident wave
is H-polarized all the energy concentrates into the specu-
lar reflection harmonic (Wl_%lo(k)=0.0). At £=2.0 the sepa-
ration of polarizations is not so fine. Here erw(k) =1.0in
the case of H-polarization of the field and Wflo(k)=0.02
(Wgo(k)=0.98) in the E-case.

4. GRATINGS IN A PULSED WAVE FIELD

It is evident that complete analytic description of pulse
deformations in regular and irregular Floquet channels is
impossible without proper computational work. The fig-
ures obtained must be adequately interpreted. A treat-
ment of this kind originated in [3,14]. Here we discuss
some recent results based on the method reported in [1].

Four E-polarized sinusoidal plane waves ﬁﬁ)(g,k)
=exp(-ikz), Uplg,k)=explikz), Uy(g,k)=—exp(iky), and
U_l(g,k)z—exp(—iky) traveling in free space result in the

field E,(g,k) whose null surfaces at k=k?, =2/l can be
brought into coincidence with the surface S=S,X[|x|
<] of a symmetric echelette grating (see Fig. 1(a),
y=45°). This means that the total field originating when
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the echelette grating is excited by the wave f]f)(g,k) coin-
cides (everywhere above the contour S,) with the field
ﬁ(g,k):ﬁg(g,k)+2n=071’_1ﬁn@,k). In this case waves
U,(g,k), n=0,+1 play the parts of principal, plus first,
and minus first spatial harmonics of the secondary field
Us(g,k) = U(g,k) - Uf)(g,k). Usually in this way a reason is
given for an explicit analytic solution of a scattering prob-
lem in the frequency domain; the existence of the solution
is attributed to the so-called geometrical resonances [11].
Later we will see what this geometrical resonance (a fre-
quency domain effect) can tell us about the solution of the
corresponding scattering problem in the time domain.
Let us assume that a symmetric echelette grating is ex-
cited by E-polarized quasi-monochromatic wave Uf)(g,t):
®=0, vo(Ly,t)=Fy(t), k=1.563=k},, T=0.5, T=200 (see
Figs. 7 and 8). We will compare the spatial-temporal am-
plitudes of the signal Uj(g,t) and the principal spatial
harmonics U,(g,t)=u,(z,t) u,(y), n=0,+1 due to this sig-
nal in the reflection zone of the grating. Function vy(Lq,?),
whose related spectral amplitudes do not exceed 0.3 be-
yond the narrow frequency band 1.54<k<1.586, has a

simple envelope and vanishes for all ¢>T. The effective
spatial duration of the signals Uy(g,¢) and Uj(g,t) is prac-
tically the same, but the amplitude of Uy(g,t) gradually
increases by action of the perturbation source. The main
part of the pulse uy(L{,?) is followed by a short and fast
decaying tail. The tails of the pulses u,{(L{,t) are more
powerful, which is probably due to the plus and the minus
first harmonics being the principal components of the free

oscillation field complying with the eigenfrequency %

1.0 —
vo (Ly.1)
0.0—
-1.0]__
| !
1.0
uy (Ly,1)
00|
-1.0
! | !
1.0 |
u (L,1)
0.0
§ WWWW MWMWWWMWWW
-1.0 |
| | !
0 200 400 600 1

Fig. 7. Excitation of a symmetric echelette (¢y=45°, [=4.02,
L,="17.8) by a normally incident E-polarized quasi-monochromatic
wave Uf)(g,t). The spatial-temporal amplitudes are shown for
the Ui(g,t) wave and the principal spatial harmonics of the sec-
ondary field U%(g,t) on the virtual boundary L;.
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Fig. 8. (Complement to Fig. 7). E,(g,t), H,(g,t) and H,(g,t) spa-
tial distributions, g € Qr, t=189.75.

(Rek is in close proximity to the threshold point
1,~1.563).

The main carriers of the H,(g,t) component of the field

U(g,t) are U.4(g,t) waves. The H,(g,t) main carriers are

0.8n [F

"o(Ll’t)

(b) ©

Fig. 9. Symmetric echelette excitation by a normally incident
E-polarized Gaussian pulse Uf)(g,t): (a) The spatial-temporal
and the spectral amplitudes are shown for the Ul (g,¢) wave and
the principal spatial harmonics of the secondary field U*(g,t) on
the virtual boundary L; (b),(c) the E,(g,t) spatial distribution,
g €Qy, t=26 (forced oscillations mode) and =55 (free oscillations
mode).
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B(g,t) and Uy(g,t) waves. The spatial distribution of val-
ues E,(g,t), g €Qp corresponding to the field U(g,?) is
governed equally by all these waves. At some points in
time there is practically no difference with the distribu-
tion (at £=k;) due to the interference of sinusoidal waves

ﬁé(g,k) and U,(g,k), n=0,+1. The distinctions decrease
monotonically with time ¢, provided that the central fre-

quency % of quasi-monochromatic wave U’b@,t) (with a

sufficiently large spatial duration T) coincides exactly
with £7,. Thus in this situation, the principle of limiting
amplitude [3] is realized, and the transient gradually
takes on properties of the established process.

Now let us excite a symmetrical echelette grating with
an E-polarized wideband signal Ué)Qg,t) [see Fig. 9(a): the
bandwidth is given by 0.4<k<2.8, where normalized
spectral amplitudes of the function vy(L{,t) are no less
than 0.1]. The spectral amplitudes of the pulses uq(L1,?)
and vy(Lq,¢) differ little from each other everywhere ex-
cept in the frequency interval beyond the threshold point
k,. Amplitudes of pulses u,i(L1,t) are at their maxima
on this frequency interval. As in the case of a grating ex-
citation by a monochromatic signal Uf)(g,t) all features of
the functions u,(Lq,t) and |&,(Lq,k)| originate from the
threshold effect in the frequency domain and the redistri-
bution of the input energy among the spatial harmonics of

the field Us(g, k).

N

Ly .-

b

@

Vo (L1:)

o

Fig. 10. Mode-frequency exfoliation of a superbroadband pulse:
(a) Grating geometry (=60°, [=4.02, L14=8.0); (b) amplitudes of
the incident E-polarized pulsed wave Uj(g,t) (®=0); (c) energy

distribution among spatial harmonics of the field Us(g,k) in the
structure’s reflection zone.
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Fig. 11. (Complement to Fig. 10). Amplitudes of high-order spa-
tial harmonics of the field U%(g,t) on the virtual boundary L;.

Now consider the phenomenon of the strong conversion
of the sinusoidal Hyj-waves into the Hy,,-waves, m>1
that takes place on inclined H-plane plugs in rectangular
waveguides (see Fig. 12 in [15]). This can be interpreted
in superwideband signal terms in the following manner.
The pulsed Hy;-wave with spectral amplitudes evenly dis-
tributed across the range ky<k <k (k,, is the Hy,,-wave
cutoff) is reflected from the plug to produce a series of
pulsed H,,-waves, m=2,...,M -2, each occupying its
own band k,,<k <k, o in the range. In this band, func-
tion W,,1(k) describing the input energy portion trans-
ferred to the reflected Hy,,-wave at first monotonically in-
creases from zero up to max, W,,1(k)=W,,1(k,,.1) =1, then
monotonically decreases to W,,1(k,,,2) <1.

Phenomena of this kind appear during scattering of su-
perwideband TE,;-pulses on cone-shaped plugs in circu-
lar and coaxial waveguides [16] and also during scatter-
ing of E-polarized pulsed waves of normal incidence on a
symmetric metal echelette grating with obtuse teeth (see
Figs. 10 and 11). The result is that a superwideband pulse
of one type [for echelette gratings, it is the pulsed wave
Ui (g,¢t)] changes into an ordered sequence of narrowband
pulses of other types [pulsed spatial harmonics U, (g,t);
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|n|=1]. This effect is called modal frequency exfoliation of
a superwideband signal. Particular bands occupied by
each pair U,,(g,t) of pulsed waves and the W,y(k)
=W§n0(k)+WfO(k) distributions across these bands re-
main basically the same as in the case of H,-waves of a
rectangular waveguide. The reflected pulses U,,(g,?)
with a higher |n] have a higher central frequency

kn%k;n +1)- This can be seen clearly in the character of
the oscillations of the spatial-temporal amplitudes
us,(z,t) as a function of ¢ (see Fig. 11).

In the case of H-polarization the effect is not so obvious.
Formation of pairs U,,(g,t) of the reflected pulses fitting
the above-given notion of modal frequency exfoliation
starts only beyond the point k=% ;—the grazing point for
the plus and minus third spatial harmonics of the field

Us(g, k). But now the top value of the energy characteris-
tic W,o(k) cannot reach over a 0.85 level for any of the
pairs. Distinctions from the E-case are mainly due to dif-
ferent intensities of the threshold phenomenon (Wood’s
anomalies) in the vicinities of the first three branch points
k=FkL,.

5. CONCLUSION

Some physical results obtained by the method described
in [1] are briefly depicted in this paper. These results con-
cern spatial-temporal and spatial-frequency field trans-
formations in the case of resonant wave scattering. They
underscore the potentialities of this method and its pros-
pects as a research tool for fundamental and application-
oriented problems of physics and optics.
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