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ABSTRACT: The exact “absorbing” conditions for virtual boundaries in the cross-
sections of regular circular and coaxial circular waveguides are constructed, which allow 
one to truncate efficiently the computational domain of finite-difference methods as 
applied to the simulation of transients in open axially-symmetric waveguide resonators. 
The “open” initial-boundary value problems, describing the impulse TE0n- and TM0n- 
waves in the structure of this kind, are reduced to the equivalent “closed” ones. The so-
obtained conditions are embodied in the computer programs for the analysis and model 
synthesis of functional units of impulse-wave radiators. 

Axially symmetric waveguide units are important functional elements of many 
up-to-date devices and instruments of a microwave range. They are capable to 
withstand high-Q free magnetic field oscillations to change in wide ranges a 
mode and spectral structure of signals, to respond controllably to signals of 
different polarization and duration. Their electrodynamic analysis, detection and 
optimization of different anomalous and resonance modes of wave scattering can 
be appreciably accelerated by the approaches basing on the mathematical 
simulation and computational experiment. Here the frequency-domain methods 
realizing the idea of analytic regularization were and remain unique as regards 
their efficiency and the content of results obtained [1,2].  

In the time domain, the approaches of which are directed to studying the 
physics of transients and regularities in the space-time pulsed field 
transformations, the finite-difference method [3] could play the same role. But 
there is one and very difficult theoretical problem on this way - this is the 
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problem of effective truncation of the computational domain by 
descritization of “open” initial-boundary value problems, i.e., the 
problems for which the analysis domain is not truncated in one or 
several space directions. The most simple solving of this problem is 
based on the use of a known radiation condition for outgoing waves: 
perturbation propagates with a finite velocity, therefore for any finite 
value of the observation time t  it is always possible to construct the 
virtual boundaries L , being at a rather large distance, in the points of 
which the field strength will be equal to zero. The main disadvantage 
of such an approach is the necessity in significant extension of the 
computational domain at high T  values, determining the upper limit in 
the interval  of the observation time t change.  0 t T< <

Classic approximated boundary “absorbing” conditions (ABCs: see 
[4-6]) and perfectly matched layers (PMLs: see [7,8]) allow one to 
“close” the “open” initial-boundary value problems with the near 
virtual boundaries L, but it is not possible to evaluate analytically the 
level of errors that they introduce into the sought-for field 
characteristics. When investigating the resonance situations and in the 
case of analysis of small-sized domains and high T  values this level 
can exceed the critical one when there is none true significant digit in 
the data obtained [9].  

In the present paper the problem of computational domain 
truncation is solved using the exact “absorbing” conditions the theory 
of which is developed since the late of nineties of the last century [9-
11]. These conditions do not provoke, in the analysis domain, false 
signals formed by the outgoing wave reflection from the imperfect 
transparent virtual boundaries L. They permit to change original 
equivalent “open” initial-boundary value problems by equivalent 
“closed” ones. An additional error of computations, caused by their 
inclusion into the schemes of the finite difference method, is by an 
order of magnitude lower then the ordinary errors in the approximation 
of original initial-boundary value problems [9].  

 
 

STATEMENT OF INITIAL BOUNDARY VALUE PROBLEMS 

Transformation of impulse - (0nTE 0∂ ∂ ≡φ  and 0zE E H= = ≡ρ φ ) and 
TM0n -waves ( ) by the axial-symmetric open 
waveguide resonators (an example of the geometry of a similar 
structure is given in Fig.1) is described by the following two-

0zH H E= = ≡ρ φ

dimensional (in the half-plane of the variable { }0,g z= ≥ρ ) scalar 
initial-boundary value problems:  
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and magnetic constants; ( ) 1g≡ ≥ε ε  and ( )0 0 0g≡ ≥σ σ
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(isotropic, nonmagnetic and dium: the time t 
has the dimensions of  length – this is the product of true time by the light 
propagation  velocity in vacuum R

 is the relative 
dielectric perm

nondisperse) wave propagation me

 
FIGURE 1. Resonator in the gap of a circular coaxial waveguide φ = π/2 

 
The last of the conditions in (1) is given by the problems symmetry: the axis 

=0 coincides with the circular symmetry axis, therefore, here, only Ez- and Hz- 
el

2; ρ,φ, z are the cylindrical coordinates 
 
 

 

p
fi d components can differ from zero. At U(g, t)=Eφ the problems (1) describe 
the space-time transformations of TE0n- wave and at U(g, t)=Hφ - of TM0n- 
waves. It will be recalled that [9] in the case TM0n- wave the Hφ-field 
component satisfies the telegraph equation of (1) only for the piecewise 
constants ε (g) and  
σ (g). The analysis domain Q of the problems (1) is the part of the half-plane ρ0z 
truncated by the contour S. [ ]0 2S φ π× ≤ ≤  is the surface of perfect conductors.  
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( ) ( )
0

,i
t

g U g t t
=

= ∂ ∂ψ  (U ncident wave), σ(g) and ε (g) – 1 

satisfy the conditions on the  single-valued solvability of pro e 
, 

i(g, t) is the i

blems (1) in th
Sobolev space 1

2
TW Q( ) ( )0;TQ Q T= × , T < ∞  [12]. In the regular and coaxial 

circular waveguides (in the domain ( )\L LQ Q Q L= ∪  by which the node-
formed field ca ga r, the effective scatterers do not take 
place. Here (

n propa te infinitely fa
) 1g ≡ε , ( ) 0g ≡σ  and ( ) ( ) ( ),U g t . It is assumed 

also that at a zero time t = 0 the wave 

, ,s ig t U g t U= +

( ),iU g t ; Lg Q∈ , exiting the resonator 
QL, did not r t its virtual bounda  by the dashed 
lines) that lies in the plane of regular waveguide cross-sections. The geometry of 
the domain 

each ye ry L (in Fig.1 it is marked

at the g eral soLQ in problems (1) is such th en lutions of the last ones 
in the corresponding regular frequency domains (it is evident that we can restrict 
ourselves to consideration of domains I and II with z > 0) can be represented in 
the following form 
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Here Jm and Nm are the cylindrical Bessel and Neuman functions. 
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The space-time amplitudes ( ),nu z t , ( ),nv z t  and so on in representations 
(2), (3) are sometimes named as elements of evolutio orresponding 
signals [9]. They completely determine the dynamics of propagating impulse 
waves on any finite sections of regular waveguides.  

 
 

“ABSORBING” CONDITIONS 

The exact absorbing conditions for virtual boundaries L, permitting to substitute 
the “open” initial-boundary value pr  the equivalent “closed” ones 
will be constructed using the technique approved in [9,11]. Below we consider 
only a part of such conditions and only for a part of the virtual boundary in the 
plan  of con tions, w

 

nal bases of c

oblems (1) by

e 0z = .  The full spectrum di hich can be used for correct 
restriction of the computational domain for solving the scalar and vector initial-
boundary value problems in the theory of open waveguide resonators, is 
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or domain II, corresponding to the coaxial circular waveguide). These 

ditions of problems 

Problems (1) with the nontruncated analysis domain Q and problems (1) 
with the truncated domain of analysis QL complemented by any of conditions (4) 
or (5) are equivalent [13]. Thus the analysis domain (the domain of 

(f
conditions are the direct consequence of the boundary con
1). (
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discretization of original initial-boundary value problems) can be correctly 
narrowed to QL. Realization of the corresponding algorithm leads to the 
same simple and exact numerical solution of input problems at any instant 
of observation time t, as in the case of physically  “closed” domains QL.  

We should note the following important differences between nonlocal 
and local exact “absorbing” conditions. The first of them (see, for example 
(4)) require the complete information on the systems of “transverse” 
igenfunctions of waveguides loaded with the open waveguide resonator. In e

the general case the solution of corresponding spectral problems can be 
very clumsy and it will need significant non-productive expenditures of 
machine resources. The second (local) conditions are without this 
disadvantage - they should have a preference in analysis of units with 
power take of channels, for which the “transverse” functions can be 
determined analytically. But even in the case when the “transverse” 
functions of a regular waveguide transmission line are known (the situation 
under consideration is this case too), the use of local conditions makes it 
possible to execute the computation more quickly and with much less 
capacities of the employed computer [13].   

 
 

TESTING OF AN ALGORITHM 

The algorithm of solving the problems (1), (4) and (1), (5), basing on their 
standard discretization by the finite difference method, is represented in the 
computer programs for calculation of impulse TE0n and TM0n waves in the 
axial-symmetric structures with, practically, any geometrical and material 
parameters. Also, there are not strict limitations on the parameters of initial 
signals ( ), ,iU z tρ . Numerical testing was carried out in the framework of a 
standard scheme permitting to evaluate the real error of results [9]. An 
exact (strict) solution of model problems has been compared with the 
solution obtained using exact conditions and approximated classic ABCs. 
Besides, testing was carried by the results obtained by the strict methods of 
frequency domain [2]. Below an example of such work is given. 

ension of the circular waveguide In the book [3], in Fig.3(b), for ext
with 0.8b aθ = =  and 0.85L l a= =  (see Fig.2), we find two points 
(κ1 ≈ 0.98 and  
κ2 ≈ 1.05), in the range 0.6 < κ < 1.2 of relative frequencies κ = a/λ (λ = 
2π/k is the wavelength in the free space), in which the incident TM01 wave 
is all reflected by the semitransparent structure.  

 8
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FIGURE 2. Extension of the circular waveguide 1 2L L L= ∪  

 
Let us sumilate a similar situation in the framework of the initial-boundary 

value problem (1), (4): the axial-symmetric nonuniformity with a = 1, b = 0.8,  
l = 0.85 and d = d1 + l + d2 = 0.6 + 0.86 + 0.55 = 2 from the left is irradiated with 
the pulse TM01-wave {Eρ, Hφ, Ez} with the space-time amplitude of the 
electromagnetic field Eρ-component (see representation (3)) equal to 
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re is the signal time delay, T  k~( 70T = , 1A = , 1.9kΔ = , 5.6k = ). He is its 

ines the effective frequency band occupied by 
the signal. The regular circular waveguides on the left and right of the 
non

central frequency and Δ k determ

uniformity are single-mode ones in the frequency range 3 < k < 6.9. The 
extension supports propagation of the one wave at 2.4 < k < 5.52 and of two 
waves at 5.52 < k < 8.65. The function 1

ρv (0,t) and moduli    1~
ρv (0,k) of its 

corresponding amplitudes 
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10, 0, e 0,
2
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iktv k v t dt v tρ ρ ρ
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(image  original; T is the upper limit in the interval of observation time t) in 
the frequency range 2 < k < 9 are presented in Fig.3.  

↔
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( )1 0,v tρ

2 
 
 

 
a) 

 
b) 

FIGURE3. The time (a) and spectral (b) amplitudes of the Eρ- field component of TM01- wave of 

excitation  at the boundary L1 in the plane z = 0. 

In Fig.4 are shown the spatial-time and spectral amplitudes of the 
transmitted pulse wave. The total reflection occurs at frequencies k 6.18 and 
k2 6.6, corresponding to the regime of the second mode, closed in the 
extension, or to the regime {N, M, P} with N = P = 1 and M = 2; N and P is the 
number of waves propagating in the left and the right waveguide; M is the 
number of waves propagating in the extension. The experimental values of k1 
and k2 correspond to the values of κ1 and κ2 of relative frequencies given in the 
book [3].  
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( )1 ,u z tρ  

 
 

a) 
 

 
 

b) 
 
FIGURE 4. The time (a) and spectral (b) amplitudes of the transmitted impulse TM01-wave (Eρ-
component) at the boundary L2 in the plane z = 2 

MODE CONVERSATION OF PULSE WAVES 

Below we give the results of the study on the synthesis of a transmission 
resonator (see Fig.5) transforming the TE02-waves {Hρ, Eφ, Hz} of the circular 
waveguide in TE01-waves. The left (L1) and the right (L2) parts of the virtual 
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boundary in the computation domain QL are situated in the planes 
=0 and z = 0.8. N.P. Yashina and V.P. Tkachenko solved the synthesis problem 
sing the frequency domain methods. We are basing on their results by 

 is excited by the impulse TE -wave 
with the space-time amplitude (0, t) = f (t) (see formula (6); 10T =

 
 

FIGURE 5. Geometry of the transmission resonator a = 0.160;   b1 =  0.121; b2 =  0.078;  
l1 =  0.012; l2 =  0.082; L1 =  0.022; L2 =  0.029; L0 = 0.177; d1 =  0.178; d2 = 0.30;  ε1  = 1.07; ε = 
1.57; ε2  = 1.52 

 
In Fig.6 presented are the spectral amplitudes of the excitation signal and 

impilse waves propagating in the left and right waveguides. It is seen that in the 
band 66.5 < k < 68 (mode {N, M, P} with N = 2, P = 1 and  M = 3) the TE02-
wave of the left waveguide transforms into the TE01-wave of the right waveguide 
almost fully. 

In Fig.7 one can see the spatial distribution of the complete electric field 
strength (E -field component) at the instant of observation time t = 3.5 in the 

ρv (0, t) = sin (

 1 2L L L= ∪  
z
u
simulating the corresponding conditions in the time domain.  

In the first experiment the structure 02

v 2
ρ , 1A = , 

6kΔ = , 66k = ).  
 
 

φ

case of quasimonochromatic excitation of the transformer by the TE02-wave with 
the amplitude 2 k~ t) χ (10 – t). Here χ is the Heavisade step 

function and k~ = 67.6 is the central part of the signal. A rather wide band of the 
almost full transformation is formed d e to the excitation in the transmission 
resonator of quasi-eigen modes. To them corresponding are near eigen 
frequencies and 

u

1k and 2k with Re 1k ≈ 66.075 and Re 2k  ≈ 68.64.  
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( )

 
 

a) 
 

 
 

b) 
FIGURE 6. Spectral amplitudes of the excitation angle (a) and propagating pulse modes in the left 
(z = 0) and right (z = 0.8) waveguides (b) 

 
We obtain the characteristics of  “natural” resonances by the methods 

developed in [9,14]; the quantities Re 1k  and Re 2k  are determined by the 
behavior of the spectral amplitudes ( ) ( ), ,H g k H g tρ ρ↔  in the series of points 
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 1Rek k=central frequency or 2

 res
Rek k= inite duration. One can 

judge on the power of the transmission onator to accumulate the energy in the 

Hz (g, t) taken off in the points g of the 
domain Q, coinciding (or almost coinciding) with the local maxima in the spatial 
distribution of the strength of free oscillation fields (see Fig.9).  
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FIGURE 8. Spectral amplitudes 
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a) 

 
b) 

FIGURE 9. Hρ (g, t)-component of the complete filed in the points g1 (a) and g2 (b) of the domain 
QL in the case of excitation of the transmission resonator by the quasimonochromatic signal with 

( ) ( ) ( )2 0, sin 20v t kt tρ χ= − ; 1
~k = 66.075 (a) and 

~
= 68.64 (b). 

 
APPLIED PROBLEMS 

Statement and solving of initial-boundary problems (1) were stimulated, first of 
all, by the actual needs in reliable model processing of a number of functional 
units of powerful superwide-band electromagnetic pulse radiators. This topic 
will receive full coverage in the following papers. Here we give only one 
example demonstrating the potentialities of the developed algorithm and 
concerning the electrodynamic analysis of the sharpening and cut-off spark 
section of a picosecond pulsed oscillator operating in the “cold’ (spakless) 
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(Eρ-component) distribution in the domain QL at the instant of observation time t 
= 0.48 in the case of the section fragment excitation (proportions are conserved) 
by the videopulse TEM-wave. In Fig.11 shown are the space-time and spectral 
amplitudes of the Eρ-components of the videopulse TEM-wave incoming at the 
boundary L1 and of the TEM-wave outgoing from the boundary L2 in the 
direction of z increasing. The parts L1 and L2 of the virtual boundary L of the 
analysis domain Q lie in he planes z = 0 and z = 0.28 (see Fig.10). 

 

 

 
FIGURE 11. Space-time and spectral amplitudes of Eρ-components of the incoming (a) and 
outgoing (b) TEM-waves 

FIGURE 10. Toward the electrodynamical analysis of a fragment of the sharpening and cut-off 
sections for high-power superwide-band systems. 
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CONCLUSIONS 

The computational experiments, we have carried out, confirmed the 
effectiveness and reliability of the defined solution of model initial-boundary 
value problems (1). The exact “absorbing” conditions considerably reduce the 
space (and, consequently, the time) of the computation in comparison with other 
approaches making it possible to reach a required accuracy. They do not 
increase the error of the standard finite-difference approximation and do not 
sophisticate the physics of simulated processes as in the case when known 
classic conditions are used. It is important that this solution involves a very 
wide-ranging set of problems and can be used for the study of many 
electromagnetic wave scattering modes being of interest for theory and practice.  
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