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Abstract—The optical diffraction radiation that accompanies 

the motion of a modulated beam of electrons near a dielectric 
nanowire scatterer is investigated in the two-dimensional 

formulation. Our goal is to compute the field in the near and far 

zones and analyze how it depends on electron beam parameters. 

We demonstrate the excitation of internal resonances of such a 

scatterer that can be useful in the design of nanoscale non-

invasive beam position monitors. 

Index Terms— diffraction radiation; nanowire scatterers; 

Smith-Purcell effect; surface wave; total scattering cross-section 

I.  INTRODUCTION 

Radiation of electrons passing in the vicinity of a periodic 

structure made of some conducting material is called the 

Smith-Purcell effect (SPE) [1]. It has been studied by both 

experimentalists and theoreticians for over 60 years now since 

its discovery [2-5]. Today, SPE is viewed as the most 

practically important however still particular case of more 

broadly defined effect: the radiation of the surface and 

polarization currents induced on various material objects in 

various frequency regions by the charged particles or their 

beams, which do not touch or hit these material objects. To 

distinguish this type of electromagnetic-wave radiation from 

the others, such as, for instance, the transient radiation, it is 

commonly called the diffraction radiation (DR) [3-10].  
Detection of DR in the visible wavelength region, called the 

optical DR is the most promising technique for application to 
noninvasive beam diagnostics [6-10]. Here, the emergence and 
rapid development of nanotechnologies opens the way to use 
nanoscale scatterers and associated resonances on the surface-
plasmonic and dielectric modes as sensitive antennas [11,12]. 
Indeed, such antennas radiate the optical waves, characterized 
with the far-field patterns and the carried power values 
depending on the electron-beam bunching, velocity, and fine 
distance to the beam trajectory. For instance, for the 
configuration in Fig. 1, the measurement of the DR pattern can 
deliver the information on the beam position shift h and 
velocity v . 

Note that the nanowires can be designed resonant and, 
moreover, tunable by covering the wires with the graphene [13-
15]. Nanoscale size of such beam-sensor antennas introduces 
negligible distortion to the beam energy characteristics, which  

 

Fig. 1. Cross-sectional geometry of an electron beam moving near a circular 
dielectric nanowire. 

can be considered as fixed. This makes possible the analysis of 
sensing antenna elements in the same way as within the 
traditional antenna theory, i.e. as the scattering of the given 
electromagnetic field of the moving beam by the conducting 
and dielectric scatterers of given shapes and material 
properties. The latter parameters can be manipulated to 
optimize the beam-diagnostics antenna performance.  

II. SCATTERING CONFIGURATION AND BEAM FIELD 

We assume that two-dimensional (2-D) electron beam with 

the harmonic time dependence i te   is moving over a circular 

dielectric nanowire with radius a, and dielectric permeability  

at the distance h from it’s surface. Hence, the beam distance 

from the x-axis is p = h + a. Besides, we denote the inner and 

the outer domains of the wire as domains (1) and (2), 

respectively, and introduce the Cartesian and the polar 

coordinates as shown in Fig. 1. 

Consider the diffraction radiation, which accompanies a 

uniform motion of a plane unbounded electron beam moving 

along the straight trajectory with velocity v c ( < 1) near 

the dielectric wire. The charge density function is then given by 

0 ( )exp[ ( / )]y p i kx t       ,                  (1) 

where ( )  is the Dirac delta function,   and 0  are the 

frequency and the amplitude of beam modulation, /k c  is  

the free-space wavenumber, and c is the light velocity.  

We will consider the electromagnetic-field problem in the 

given-current approximation. In this case the incident wave is 
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the field of the sheet current beam (1) moving in the free space. 

As it was shown in [2], this field has the form of a slow 

inhomogeneous plane wave of the surface nature, the only 

nonzero component of the magnetic field of which is     

 | | ( / )( , ) sign( ) q y p i k x

zH x y A y p e e   


 (2)

where /q k  , 2 1/2(1 )   , function sign( )y p  is the 

sign of the expression in the brackets, time dependence is 
omitted, and 0A   is a constant. This is a surface wave 

running along the beam trajectory in the positive direction of 
the x-axis. Note that the modulation of the electron beam can 
be achieved by its preliminary bunching in periodic waveguide 
or through direct modulation by a laser emission [6,12]. 

III. PROBLEM FORMULATION 

In the presence of the scatterer, the total field in the 

external medium is characterized by the sum (2)tot in

z z zH H H  . 

In addition, in the scatterer the field (1)

zH  is different from (2).  

The unknown field function must satisfy the conditions: 

1. The Helmholtz equation with coefficient 
1k k  in domain 

(1) and 
2 /k k c   in domain (2), 

2 (1,2)

1,2( ) ( ) 0k H r                          (3) 

2. The boundary conditions at r a  and 0 2   , 

(1) (2) (1) (2),in inH H H E E E      ;              (4) 

note that from Maxwell's equations it follows that  

 
1(1,2) (1,2)

0 1,2 /zE Z ik H r 


   ,                (5) 

where the polar coordinates ( , )r  relate to the Cartesian ones as 

, (cos,sin)x y r  and 1/2

0 0 0( / )Z   is vacuum impedance, 

3. The condition for the local power finiteness, 

4. The radiation condition at infinity (outgoing wave behavior), 

    2(2) 1/2 1/2

2( , ) 2 ( ) ( )
ik r

H r i k r e     at r  ,         (6) 

These conditions guarantee the solution uniqueness. 

IV. BASIC EQUATIONS 

The circular shape of the boundaries between different 

materials suggests the use of the method of separation of 

variables. This means we expand the field functions in each 

domain in terms of Fourier series in the angular coordinate  , 

in particular, if sinr p   and r a  then 
cos( )( )in qp ikr

zH r Ae e     ,                         (7) 

where we introduce the complex incidence angle  , such that 

cos 1/ , sin /i      ,                      (8) 

and, according to the Anger formula, obtain 

 
( ) ( )(1 )

q h ain m m m im

m

m

H r Ae i J kr e  


  



        (9)          

The scattered field is expressed as  

1

(1)

( ),
( )

( ),

m msc im

m m m

a J k r r a
H r e

b H kr r a






  
  

  
 ,                 (10) 

where ,m ma b  are unknown coefficients and mJ  and (1)

mH  are 

the Bessel and Hankel (first kind) functions. The coefficients 

 
Fig. 2. Normalized TSCS of the 50-nm in radius lossless silicon nanowire 

( = 12) versus the wavelength in the visible range, for several values of 

the electrons’ relative velocity . Note the resonances on the wire modes. 
 

are found using the conditions 1. to 4. in analytical form as 

  
1

( ) ' ( ) ( ) ' ( )m m m m m ma C f ka H ka H ka f ka


   ,       (11) 

  
1

( ) ' ( ) ( ) ' ( )m m m m m mb C f ka J k a J k a f ka  


   ,    (12) 

where the superscripts of the Hankel functions and their 

derivatives are omitted, and other notations are 
 q h a

C Ae
 

  ,                              (13) 

( )(1 ) , ( )(1 )m m m m m m

m m m mf i J ka f i J ka         , (14) 

( ) ' ( ) ' ( ) ( )m m m m mJ k a H ka J k a H ka     ,        (15) 

Here, characteristic equations of the considered scatterer, 

( ) 0, 0, 1, 2,...m k m      ,                      (16) 

may have only complex solutions, mnk , which form a discrete 

set with negative imaginary parts. These are complex natural 

wavenumbers of the modes of dielectric wire as open cavity, 

usually denoted as ,m nH  where 0,1,...m   and 1,2,...n  . 

The scatterer will be characterized with its total scattering 

cross-sections (TSCS), 

2

2

4
| |sc m

m

b
kA






  ,                               (17) 

which is the result of integration of the Poynting vector flux of 

the scattered field over all space directions. Presented further 

results for quantities (17) are normalized by 4a  that is the limit 

value of sc  at 1   and /a    . 

V. NUMERICAL RESULTS 

We have studied the DR characteristics for the scatterer 

shaped as a circular dielectric wire shown inFig. 1.  

The plots in Fig. 2 demonstrate the dependences of the 

normalized TSCS on the modulation wavelength in the visible 

range, for the wire with the radius 50 nm, relative dielectric 

constant  = 12, the separation distance h = 10 nm, and several 

values of the relative beam velocity . As one can see, due to 

rather high optical contrast of silicon, even such a tiny wire 

behaves as an open nanocavity. 
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(a) 

  
(b) 

Fig. 3. Near magnetic field patterns (left) and normalized far-field scattering 

pattern (right) of the lossless silicon nanowire of the radius a = 50 nm for  = 

464 nm and a (b) in the resonance on the mode H01. 

  
(a) 

  
(b) 

Fig. 4. The same as in Fig. 3 however for the mode H11 at  = 306 nm. 
 

Indeed, for all values of the relative beam velocity the 

spectra of TSCS display three distinctive peaks in the visible 

and ultra-violet ranges. Their wavelengths positions at 464 

nm, 306 nm, and 225 nm do not depend on the relative beam 

velocity.  

The panels of Figs. 3 to 5 show the in-resonance near field 

patterns for the same dielectric nanowire as in Fig. 2 and two 

values of One can clearly see the straight trajectory of the 

beam at the distance h = 10 nm above the wire. The bright 

spots of the field inside the wire enable one to identify the 

resonating modes. The lowest of them, in frequency, is the H01 

mode at 464 nm that is certified by the single bright spot near 

to wire’s center. The next, in frequency, is the dipole mode 

H11 at 306 nm showing two bright spots. The most high-

frequency peak at 225 nm is on the quadrupole mode H21. This 

field pattern is well visible for the relativistic beam DR, as at 

1 1   the beam field (2) is very close to a plane wave,  

  
(a) 

  
(b) 

Fig. 5. The same as in Figs. 3 and 4 however for the mode H21 at  = 225 nm.  
 

albeit with a jump at the beam trajectory. 

Here, it is necessary to remind that if ≠the incident 
field (2) is not symmetric with respect to the wire section by 
the x-axis. Therefore, at the resonance wavelengths, the beam 
field excites not a single one of two degenerate wire modes 
Hm,n (m > 0) but the both, and the contribution of the anti-
symmetric with respect to y = 0 component gets larger with 

smaller This leads to the overlap of two modal patterns so 
that the resulting field portrait resembles a continuous ring. The 

reason is that if 1   (non-relativistic beam) then the 

contributions of both components to the resonance field differ 
only by the factor (i). Hence the inner field pattern becomes 

the clockwise rotating wave, ( )(cos sin ) ( )
m

J k a m i m O     , 

instead of the standing-wave ( )cos
m

J k a m  , observed in the 

plane wave scattering. 
This feature is also well visible in the far zone, where the 

normalized by maximum value angular scattering patterns are 

also shown in Figs. 3 to 5 at the same wavelengths. If 1  , 

then the in-resonance radiation becomes omnidirectional. Note 

that this is not true for the resonance on the H01 mode (Fig. 3) 

because in this case the contribution of anti-symmetric field 

component is close to zero. 

VI. CONCLUSIONS 

If one can neglect the action of the field on the electrons, 

then the electromagnetic field of a modulated 2-D beam takes 

form of a surface wave propagating along the beam trajectory. 

This wave induces the polarization and surface currents on the 

local obstacles and hence a radiation occurs even if the beam 

does not touch the obstacle. In fact, the wire plays the role of 

optical nanoantenna, which makes the beam of particles 

visible. As we have shown, a nanowire behaves as an open 

resonator, thanks to which the radiated power is enhanced near 

the natural-mode wavelengths. Unlike the more conventional 

plane-wave scattering, the in-resonance fields (except of the 

resonance on the H01 mode) are shaped as rotating cylindrical 

waves. This happens because of three circumstances: (i) the 
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beam field depends on y, and hence there are no “dark modes” 

of the wire that remain not excited because of orthogonal 

symmetry with respect to the incident wave, (ii) the symmetric 

and the anti-symmetric natural modes of the wire remain 

degenerate, and (iii) if 0  , then the phase shift between 

two field components becomes / 2 .  
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