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Abstract—The optical diffraction radiation that accompanies 

the motion of a modulated beam of electrons near a silver 
nanowire scatterer is investigated in the two-dimensional 

formulation. Our goal is to compute the field in the near and far 

zones and analyze how it depends on electron beam parameters. 

We demonstrate the excitation of plasmon resonances of such a 

nanoscale scatterer that can be used in the design of optical range 

non-invasive beam position monitors. 

Index Terms— diffraction radiation, nanowire scatterers, 

plasmon resonance, surface wave, total scattering cross-section, 

absorption cross-section  

I.  INTRODUCTION 

Since long ago, it was known that charged particles, such 

as electrons, radiate electromagnetic waves when moving 

through the boundary between material media – this is called 

the transition radiation. The radiation of electrons moving in 

vacuum without crossing any material boundaries attracted the 

attention of researchers much later. The most known example 

of such effect is the Smith-Purcell radiation [1-13]; it is 

associated with an electron beam flowing over a periodic 

grating, for instance, ruled on a metal surface. Still the Smith-

Purcell radiation is only a particular case of more general 

phenomenon: the radiation of the surface and polarization 

currents induced on the metal and dielectric objects by the 

electron beams flowing in their vicinity however without 

touching them. This type of electromagnetic-wave radiation is 

commonly called the diffraction radiation (DR) [3-13]. As 

known, the characteristics of beam monitors can be enhanced 

if the scatterers are shaped as cavities, thanks to the associated 

high-Q resonances [3]. 
Today DR is considered as the most promising technique 

for noninvasive beam monitoring and diagnostics [6-10] in 
charged-particle accelerators. This is because the directional 
shape of the far-field pattern and the amount of DR power 
values depend on the electron-beam parameters such as 
bunching, velocity, and distance between the beam and the 
scatterer.  

Detection of DR in the visible wavelength region, called the 
optical DR, is of the special interest because rapid development 
of nanotechnologies opens the way to use micro and nanoscale 
scatterers. Such scatterers can be also designed to display the 
resonances from ultraviolet to infrared wavelengths. The  

 

Fig. 1. Modulated electron beam flowing near a circular silver nanowire. 

associated resonances are then either on the low-order modes 
of dielectric objects or the localized surface plasmon (LSP) 
modes of noble-metal objects [14-16]. Note that the plasmonic 
scatterers can be designed tunable if covered with the graphene 
[17-20]. Nanoscale dimensions of such beam-sensor antenna 
elements help reduce distortion to the electron beam velocity 
and power, which therefore can be assumed fixed. Under such 
assumption, called fixed-current approximation, one can 
perform engineering analysis of the beam monitors like it is 
done in the traditional antenna theory: DR can be treated as the 
wave scattering phenomenon. In this work, we apply the 
outlined approach to study the optical DR in the presence of a 
circular silver nanowire as a simplest nanocavity. 

II. SCATTERING CONFIGURATION AND BEAM FIELD 

Consider a zero-thickness two-dimensional (2-D) beam of 

charged particles, which flows along the straight trajectory with 

velocity v c ( < 1) at the distance h from a circular silver 

nanowire. The wire radius is a and its dielectric permittivity   

depends on the wavelength. Denote the inner and the outer 

domains of the wire as domains (1) and (2), respectively, and 

introduce the Cartesian and the polar coordinates as shown in 

Fig. 1. Hence, the beam distance from the x-axis is p = h + a.  

Assume that the particle density is modulated with the 

cyclic frequency  Then the charge density function has a 

harmonic time dependence i te   and is given by 

0 ( )exp[ ( / )]y p i kx t       ,                  (1) 

where ( )  is the Dirac delta function, 
0  is the amplitude of 

the beam modulation, and /k c  is the free-space 

wavenumber (c is the light velocity). The modulation of the 



electron beam can be achieved by its preliminary bunching in a 
periodic waveguide or directly by a laser emission [7,13]. 

According to [2], the Coulomb field of the beam (1) is a 

inhomogeneous plane wave, the single component of the 

magnetic field of which is given by the expression 
 

| | ( / )( , ) sign( )in q y p i k x

zH x y A y p e e                (2)

where /q k  , 2 1/2(1 )   , function sign( )  is the sign 

of the argument, the time dependence is omitted, and 0A   is 

a constant. This is a slow surface wave running in the positive 
direction of the x-axis. Note that the function (2) has a jump at 
the trajectory y = p that corresponds to the electric current.  

Our aim is to determine the total electromagnetic field of 
beam (1) in the presence of the wire. We will consider the 
associated scattering problem assuming that the beam velocity 

 is a constant, i.e. in the given-current approximation.  
 

III. FORMULATION OF THE WAVE SCATTERING PROBLEM 

The surface currents, induced on the wire by the incident 

field (2), generate the scattered field (2)

zH  and modify the 

field in the inner domain, (1)

zH . Then the total field in the outer 

domain can be presented as (2)tot in

z z zH H H  . The unknown 

functions must satisfy the following conditions: 

1. The Helmholtz equation with coefficient 
1k k  in domain 

(1) and 
2 /k k c   in domain (2), 

2 (1,2)

1,2( ) ( ) 0zk H r                              (3) 

2. The boundary conditions at r a  and 0 2   , 

(1) (2) (1) (2),in in

z z zH H H E E E      ,              (4) 

where the electric field  -component relates to the magnetic 

field as (1,2) 1 (1,2)

0 1,2( ) /zE Z ik H r     , 1/2

0 0 0( / )Z   is the 

free-space impedance, and sin , cosx r y r   . 

3. The condition of the local power finiteness. 

4. The radiation condition at infinity (outgoing wave behavior), 

    (2) ( , )zH r  ~ 21/2 1/2

22 ( ) ( )
ik r

i k r e    at r  ,         (5) 

As known, the conditions 1 to 4 guarantee the solution 

uniqueness. 

IV. BASIC EQUATIONS 

The circular shape of the wire boundary suggests the use of 

the method of separation of variables, in the polar coordinates. 

Therefore we expand the field functions in each domain in 

terms of Fourier series in the angular coordinate  , in 

particular, if siny r p   then 
cos( )( )in qp ikr

zH r Ae e     ,                         (6) 

where we introduce the complex incidence angle  , such that 

cos 1/ , sin /i      .                         (7) 

The function (6) has the known representation as a Fourier 

series, 

 
( ) ( )(1 )

q h ain m m m im

z m

m

H r Ae i J kr e  


  



        (8)          
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Fig. 2. Bulk complex relative permittivity function of silver versus the 

wavelength. 

 
Fig. 3. Normalized TSCS of the 50-nm radius silver nanowire versus the 
wavelength in the visible range, for several values of the electrons’ 

relative velocity . 

 
Fig. 4. Normalized ACS of the same nanowire versus the wavelength. 

 
Then the scattered field is presented as  

(1)
1

(1)(2)

( ),,
( )

( ),,

m mzsc im

z

m m mz

a J k r r aH r a
H r e

b H kr r aH r a






      
    

      
 ,       (9) 

where ,m ma b  are unknown coefficients and 
mJ  and (1)

mH  are 

the Bessel and the first-kind Hankel functions. The coefficients 

are found using the conditions 1. to 4. in analytical form as  

  
1

( ) ' ( ) ( ) ' ( )m m m m m ma C f ka H ka H ka f ka


   ,       (10) 

  
1

( ) ' ( ) ( ) ' ( )m m m m m mb C f ka J k a J k a f ka  


   ,    (11) 



where the superscripts of the Hankel functions and their 

derivatives are omitted, and other notations are 
 q h a

C Ae
 

  ,                              (12) 

( )(1 ) , ( )(1 )m m m m m m

m m m mf i J ka f i J ka         , (13) 

( ) ' ( ) ' ( ) ( )m m m m mJ k a H ka J k a H ka     ,        (14) 

Here, characteristic equations of the considered scatterer, 

( ) 0, 0, 1, 2,...m m      ,                  (15) 

may have only complex solutions,
mn , which form a discrete 

set with non-zero imaginary parts. These are complex natural 

wavelengths of the modes of a circular wire as open cavity. 

We characterize the scatterer with its total scattering cross-

sections (TSCS) (17) and absorption cross-sections (ACS). 

TSCS is the result of integration of the Poynting vector flux of 

the scattered field over all space directions, 

2

2

4
| |sc m

m

b
kA






  ,                           (16) 

ACS is obtained with the aid of the Optical Theorem (a.k.a 

Complex Poynting Theorem) applied to the total field function 

and its complex conjugate. With account of (7), it takes form of 

                
2

4 1
Re

m

qp m

abs m sc

m

e i b
kA


 








 
   

 
        (17) 

 

Presented further results for (16) and (17) are normalized 

by 4a  that is the limit value of 
sc  at 1   and /a   . 

V. NUMERICAL RESULTS 

We have studied the DR characteristics for the scatterer 

shaped as a circular dielectric wire shown in Fig. 1. The 

complex-valued bulk dielectric permittivity of silver has been 

taken from the paper of Johnson and Christy [21] and 

combined with a cubic spline interpolation (Fig. 2). In 

computations, the associated series have been truncated at the 

number ±10 that well exceeds the maximum of the values ka  

and | |ka  in the whole optical range and provides 6 and 

more correct digits. 

The plots in Fig. 3 demonstrate the dependences of the 

normalized TSCS on the modulation wavelength in the visible 

range, for the wire with the radius 50 nm, the separation 

distance h = 10 nm, and several values of the relative beam 

velocity . For all , the plots of TSCS show the maximum at 

λ = 347 nm, preceded by the minimum at λ = 318 nm. 

The graphs in Fig. 4 demonstrate the modulation 

wavelength dependences of the normalized ACS for the same 

silver nanowire. They show essentially only the maximum at λ 

= 343 nm. Note that ACS is quite comparable with TSCS, 

especially in the blue and violet parts of spectrum. 

As expected, the wavelengths of the peak scattering and 

peak absorption are very close to the root of the “textbook” 

quasi-static equation, Re ( ) 1     [14,15], found at λ = 338 

nm [21]. This is a collective resonance caused by the infinite 

number (m = 1,2,…) of the transverse LSP modes of a circular 

wire with negative dielectric function, because if / 0a   , 

then 1 2 2( ) ( ) 1 ( )m O m a        [15]. The separate LSP 

resonances merge together because of the losses in silver. 

 

 

(a) 

 

 

(b) 

Fig. 5. Near magnetic field patterns (left) and normalized far-field scattering 

pattern (right) of the silver nanowire of the radius a = 50 nm for  = 347 nm and 

a (b) in the LSP resonance. 

 

 

 

(a) 

 

 

(b) 
Fig. 6. The same as in Fig. 4 however for the  = 318 nm in the minimum of 
TSCS plots. 

 

The minimum of TSCS (and to lesser extent of ACS) is 

typical for the plasmonic scatterers, see [17-20]. Its location in 

wavelength corresponds to the value, at which the dielectric 

function of silver comes near to 1, Re ( ) 1   . Here the metal 

becomes optically transparent although still not invisible due 

to small absorption. According to [21], that happens at λ = 308 

nm, and the red shift is the effect of finite wire radius. As can 

be found after inspection of the works [22-25], this 



“invisibility” effect is equally well observable in the scattering 

of light by finite and infinite arrays of circular silver 

nanowires. Potentially such optical transparency can be also 

useful in the design of beam velocity sensors. 

We have computed the near magnetic field patterns and the 

normalized far-field angular scattering patterns of the same 

silver nanowire, at the fixed values of  and . As one can see 

in Fig. 5, at the resonance wavelength the field bright spots are 

located near the surface of the nanowire and do not penetrate 

into it. This is explained by the surface nature of the plasmon 

modes. 

At the “invisibility wavelength,” the total field in the near 

zone shows the beam field (2) only slightly perturbed by the 

wire – see Fig. 6.   

The shape of the far-field DR patterns can be explained by 

the contribution of the field part, which is anti-symmetric with 

respect to the wire center (along the y-axis). Its maximum is 

always oriented in the normal direction to the beam trajectory.  

VI. CONCLUSIONS 

We have studied, in the fixed-current approximation, the 

optical diffraction radiation that accompanies the motion of 

the charged-particle beam near a plasmonic silver nanowire.  

As we have shown, the radiated power is enhanced near the 

natural-mode wavelength of the plasmonic nanowire open 

resonator. This can be used in the design of nanoscale beam 

position sensors and monitors. Unlike the diffraction radiation 

in the presence of dielectric nanowire, the metal nanowire also 

displays the effect of “invisibility” at the wavelength close to 

the optical transparency of metal. It can be noted that in-

resonance fields are shaped as rotating surface waves made of 

two degenerate LSP modes with nearly / 2  phase shift. This 

happens because, unlike the plane-wave field, the beam field 

depends on y, and hence can excite each of two degenerate 

(symmetric and the anti-symmetric) natural LSP modes of the 

wire.  
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