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Excitation of Guided Waves on a Lossless
Dielectric Slab by an E-Polarized
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Abstract— A lossless slab excited by an E-polarized two-
dimensional (2-D) complex source point (CSP) beam is studied
analytically. Such a source, unlike a Gaussian beam, satis-
fies exactly the Helmholtz equation and radiation condition,
without paraxial approximation or formulation incompleteness.
The guided-waves fields as well as the scattered fields in the
regions above and below the slab are determined; in turn, the
corresponding powers are directly calculated. Numerical results
on the variations of these quantities with respect to the slab
electrical thickness, the beam angle of incidence, the source
aperture size and location are presented. Substantial power
transfer from the finite directive source into each of the slab’s
guided waves is recorded especially in the case of near-grazing
beam illumination. Such a finding may inspire further theoretical
and experimental efforts towards numerous research directions
like non-invasive sensing, wireless optical tagging and energy
teleportation.

Index Terms— Complex beams, guided waves, scattering, slabs,
waveguides.

I. INTRODUCTION

TRANSMISSION and reflection of a directive wave beam
by a dielectric slab has gained considerable attention

in many applications in optics and microwaves. In most of
the relevant publications, such a beam was assumed to be
a Gaussian beam [1]–[5]. Although this has brought many
useful results, it must be noted that using a Gaussian beam in
wave scattering formulations is mathematically controversial
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because, unlike the scattered field, it is not a solution to the
Helmholtz or Maxwell equations and does not satisfy the
radiation condition at infinity. Additionally, Gaussian beam
field magnitude is symmetric with respect to its waist section
which is not the case for any realistic source such as small
horn or lens antennas.

The alternative was proposed in [6]. This is a complex
source point (CSP) beam, which is the exact solution of the
Helmholtz or Maxwell equations and satisfies the radiation
condition at infinity. Additionally, it has asymmetric wave field
with maximum magnitude along only one direction, normal
to its aperture. The power carried by a CSP beam is finite,
similar to Gaussian beam but contrary to the plane wave
power. Actually, the CSP beam asymptotically coincides with
the Gaussian beam in the paraxial domain of the near-field
zone. Thus, it can adequately model a directive feed placed at
a finite distance from scatterers.

CSP beams were used as incident fields in flat-interface
scattering [7], [8], and reflector and lens antennas [9]–[15],
and as basis functions in numerical discretization in [16]–[19].
Recently, they were used in two-dimensional (2-D) photonic
crystal scattering [20], wedge scattering [21], and for investi-
gating absorption by a lossy grounded dielectric slab with a
superstrate [22].

The case of a lossless dielectric slab is important in view
of its ability to guide natural waves. The effect of the guided
waves was completely neglected or overlooked in [1]–[5]
where only the beam transmission and reflection was studied.
Their excitation by a directive beam has much in common
with the scattering of the same guided waves by inclusions and
particles placed inside or near to the slab, studied in [23]–[31].
In particular, both types of problems need an adequate radi-
ation condition at infinity as the Sommerfeld condition is no
more valid, because of existence of nonattenuating guided
waves. Such a modified condition was introduced in [25]
(see also [32], [33]).

In this paper, we analytically study the electromagnetic scat-
tering problem associated with the CSP excitation of a lossless
dielectric slab and predict accurately the power captured by
the guided waves and the power scattered to the outer space.
More precisely, in Section II, we present the mathematical
formulation of the scattering problem and the Fourier-integral
expressions of the primary and secondary fields. In Section III,
we explicitly determine the space wave far-field scattering
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Fig. 1. Geometry and notations of the 2-D CSP beam illuminating a dielectric
slab. The beam aperture is shown by a wavy line and has the width b and the
orientation angle β.

patterns and the associated powers in the regions above and
below the slab. Then, in Section IV, we derive the exact
expressions of the fields of the guided waves propagating along
the slab as well as their corresponding powers. In Section V,
numerical results are presented concerning the variations of
the guided-waves and scattered powers versus the parameters
of the CSP beam and the slab. Numerical simulations by
commercial software are also included, exhibiting the near-
field features predicted by our full-wave analytical solution.
Finally, Section VI contains concluding remarks and future
work directions.

Some preliminary results of this analysis were reported
in a conference paper [34]. This paper provides all details
of derivations and presents additional and more convincing
numerical results. An exp(iωt) time dependence is assumed
and suppressed throughout, with ω as the angular frequency,
t as time, and i = √−1.

II. SOLUTION IN THE FOURIER-TRANSFORM DOMAIN

A lossless dielectric slab of thickness w and relative real
dielectric permittivity εr is excited by a CSP beam (see Fig. 1)
with its complex coordinates given by

rC S = (xC S, yC S) = r0 + ib, r0 = (x0, y0),

b = −b(cos β, sin β). (1)

The real coordinates of the source are given by the vec-
tor r0, and we may consider, without loss of generality, that
(x0, y0) = (0, 0). The imaginary coordinates are given by
the vector b, and hence, by the real parameters b and β,
which are, respectively, associated with the aperture width
and the orientation angle of a horn antenna simulated by
a CSP [5]–[10]. The distance between the center (0, 0) of the
CSP aperture and the lower boundary of the slab is denoted
by L. The lossless slab lies in vacuum with permittivity ε0
and permeability μ0. The entire configuration is uniform along
the z-axis.

The z-component of the primary electric field, radiated by
the CSP in the free space, is given by

Epr(r, rC S) = − i

4
H (2)

0 (k0|r − rC S|) (2)

where H (2)
0 denotes the second-kind cylindrical Hankel func-

tion of the order 0, and k0 = ω/c is the free-space wavenumber
(c is the light velocity). For b �= 0, (2) has two singular branch
points at (x0±bsinβ, y0∓ bcosβ). They call for introduction of
a branch-cut in the plane of real-valued coordinates connecting
the mentioned points, which can be viewed as endpoints of the
CSP aperture (see Fig. 1).

Note that the field (2) is the exact solution of the Helmholtz
equation with respect to the observation point r

(
�r + k2

0

)
Epr(r; rC S) = −δ(r − rC S) (3)

where δ is the delta function. It satisfies the 2-D Sommerfeld
radiation condition at infinity and has a far-field pattern as
follows:

Epr(r, rC S) ∼ √
2π/(k0r) e−i

(
k0r− π

4

)
�pr(ϕ), r → ∞ (4)

�pr(ϕ) = −( i
4π )ek0b cos(ϕ+β), 0 ≤ ϕ ≤ 2π (5)

where r = (x2 + y2)1/2 and tanϕ = y/x . Its beamwidth is
controlled by k0b, as certified by the exponential factor in (5).

The primary CSP field is perturbed by the dielectric slab,
thus generating the secondary field Esec in all regions. The
latter function satisfies the homogeneous Helmholtz equation
with wavenumbers k0 and k1 = k0ε

1/2
r in the vacuum and

the slab, respectively, as well as the transmission boundary
conditions at the slab’s boundaries. As mentioned, the radi-
ation condition for the secondary field has to be modified
with respect to the free-space radiation condition due to
the presence of guided waves in the lossless dielectric slab.
Following [25], we demand that, far from the origin function,
Esec is the sum of an outgoing cylindrical wave off the slab
domain and a finite sum of nonattenuating guided waves both
inside and outside of that domain

Esec(r, rC S) ∼ W (y)
√

2π/(k0r)e−i(k0r− π
4 )�sec ±(ϕ)

+
Q∑

q=0

Ã±
q Vq(y)e∓iβq x , ±x > 0, r → ∞ (6)

where W (y) = 1 if y < L or y > L + w and 0 otherwise,
�sec±(ϕ) are the far-field angular patterns of the secondary
fields in regions #2 and #0 (i.e., above and below the slab),
while Ã±

q are the amplitudes of the guided waves propagat-
ing along the slab, βq being the propagation constants and
Vq(y) the cross-sectional fields of these waves. The latter
quantities are the eigenvalues and eigenfunctions of the slab-
waveguide problem.

For analytical treatment of the fields in and out of the slab,
which has infinite boundaries parallel to the x-axis, Fourier
transform in x will be used. This technique allows to reduce
the dimensionality of the problem and to satisfy the boundary
conditions for all x . Thus, the primary CSP field is presented
as a Fourier (also called Sommerfeld) integral

Epr(r, rC S) = 1

4π

∫ +∞

−∞
g−1

0 e−iλ(x−xCS)e∓g0(y−yCS)dλ, (7)

where g0(λ) = (λ2 − k2
0)1/2 and |y| > b| cos β|. The integra-

tion path runs along the real axis of the proper sheet of the
associated two-sheet Riemann surface, where Re[g0(λ)] > 0
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or Im[g0(λ)] > 0. The above inequality provides convergence
of (7) and entails that L > b|cosβ|, i.e., the CSP branch-
cut cannot intersect or touch the slab interface (see Fig. 1).
Such limitations are natural in all CSP beams scattering
problems [14], [22]. Note that the CSP wave spectrum (7)
contains both propagating (if |λ| < k0) and evanescent waves
(if |λ| > k0).

Next, we present the secondary field as a Fourier integral

Esec(r, rC S) = 1

4π

∫ +∞

−∞
e−iλ(x−xCS)γ (λ, y; yC S) dλ, (8)

where the unknown function γ is found from the boundary
conditions as (for y ≤ L, L ≤ y ≤ L + w, and y ≥ L + w,
respectively):

γ (λ, y, yC S) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1 exp[g0(λ)(y − L)]
A2 cosh

[
g1(λ)

(
y − L − w

2

)]

+A3 sinh
[
g1(λ)

(
y − L − w

2

)]

A4 exp[−g0(λ)(y − L − w)].

(9)

The unknown coefficients A j = A j (λ), j = 1, . . . , 4 are
determined explicitly by imposing the transmission boundary
conditions at the interfaces y = L and y = L+w, respectively,
as follows:

A1 =
(
g2

0 − g2
1

)
sinh(g1w)

�e(λ)�o(λ)

e−g0(L−yCS)

2g0
, A2 = e−g0(L−yCS)

�e(λ)
(10a)

A3 = −e−g0(L−yCS)

�o(λ)
, A4 = g1 e−g0(L−yCS)

�e(λ)�o(λ)
. (10b)

From (10), we see that the transcendental equation deter-
mining the poles of the integrand function γ in (8) is

�(λ) = �e(λ)�o(λ) (11)

where

�e(λ) = g0(λ) cosh
[
g1(λ)

w

2

]
+g1(λ) sinh

[
g1(λ)

w

2

]
=0

(12a)

�o(λ) = g0(λ) sinh
[
g1(λ)

w

2

]
+g1(λ) cosh

[
g1(λ)

w

2

]
=0

(12b)

with the indices e and o referring to the even and odd waves.
The roots of �(λ), are denoted by λ = ±βq (q = 0,
1, 2, . . . , Q). Real-valued roots βq are finite in number and
located between k0 and k1 [35], [36]. The principal root
(q = 0) exists at arbitrary frequency and slab contrast
while the higher-order real roots (q = 1, 2, . . .) appear if
k0w(εr−1)1/2 ≥ qπ . They are the propagation constants of
the natural waves of the lossless dielectric-slab waveguide,
with symmetric and antisymmetric field patterns with respect
to the middle line of the slab, respectively.

III. FAR-FIELD PATTERNS AND SPACE-WAVE POWERS

The total electric field E tot in the lower half-plane
(region #0) determined by y < –b|cosβ| is the sum of the

CSP primary field, given by (7), and the secondary field, given
by (8), (9), and (10a)

Esec(x, y; b, β) = 1

4π

∫ +∞

−∞
e−iλ(x+ib cos β)

×eg0 y

g0

(
g2

0 − g2
1

)
sinh(g1w)

2�e(λ)�o(λ)
e−g0(ib sin β+2L) dλ. (13)

We will determine the total far-field angular pattern in the
lower half-plane by employing the steepest descent method as
follows. First, we apply transformation λ = k0cosξ to (13),
and then introduce polar variables to get

Esec(r, ϕ; b, β) =
∫

Cξ

δ̃(ξ) eρq̃(ξ) dξ, π < ϕ < 2π (14)

with Cξ the integration contour in the complex ξ -domain, and

δ̃(ξ) = i

4π

(
k2

1 − k2
0

)
sinh[g1(k0 cos ξ)w]

2�(k0 cos ξ)

× ek0b cos(ξ−β)e−2ik0 L sin ξ (15a)

q̃(ξ) = −ik0 cos(ξ + ϕ). (15b)

For r → ∞, the main contribution in the integral (14) comes
from the vicinity of the saddle point ξs = −ϕ, which satisfies
q̃ ′(ξs) = 0 and q̃ ′′(ξs) = ik0 �= 0. The integration contour Cξ

is then deformed to the steepest descent contour, defined by
cos(Reξ + ϕ)cosh(Imξ) = 1, which passes through ξs = −ϕ.

Now, by [35] and [37], we get from (14) that

Esec(r, ϕ; b, β) ∼ −
√

−2π

r q̃ ′′(ξs)
δ̃(ξs)e

rq̃(ξs), r → ∞,

π < ϕ < 2π (16)

which takes the form

Esec(r, ϕ; b, β) ∼ √
2π/(k0r)e−i(k0r− π

4 )�sec −(ϕ) (17)

where

�sec −(ϕ) = −i

4π

(
k2

1 − k2
0

) sinh[g1(k0 cos ϕ)w]
2�(k0 cos ϕ

)

× ek0b cos(ϕ+β)+2ik0 L sin ϕ. (18)

The total far-field pattern in the lower half-plane (reflection
zone) is obtained as �tot− = �pr + �sec− with the aid of (5).

By performing similar calculations for the field in the
upper half-plane (transmission zone, defined by y > L + w),
we get

Esec(r, ϕ; b, β) ∼ √
2π/(k0r) e−i

(
k0r− π

4

)
�sec +(ϕ), r → ∞,

0 < ϕ < π (19)

where

�sec +(ϕ) = k0

4π

g1(k0 cos ϕ)

�(k0 cos ϕ)
sin ϕ ek0b cos(ϕ−β)+ik0w sin ϕ

(20)

is the total far-field pattern in the upper half-plane. Note that
�tot±(0) = �tot±(π) = 0, which is consistent with the fact
that along the slab, the power is carried only by the guided
waves.
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Next, we calculate the powers lost due to scattering in the
upper and lower half planes. These powers are, respectively,
defined as the electromagnetic far-field powers exiting two
semicircles of large radius r = R → ∞. By following similar
analysis to that of [22], we get that the total radiated powers
in the upper and lower half planes are

Prad± = 1

2iωμ0
lim

r→∞

[
r
∫ ±π

0
E tot(r, ϕ)

∂(E tot(r, ϕ))∗

∂r
dϕ

]

(21)

where ∗ denotes complex conjugation. By combining the latter
with (17), we obtain that these radiated powers are

Prad± = π

k0 Z0

∫ ±π

0
|�tot±(ϕ)|2 dϕ (22)

and the total power radiated off the lossless slab is given by

Prad = Prad+ + Prad−. (23)

The radiated powers need to be normalized by a reference
quantity; such a role can be played by the power radiated by
an isolated CSP in the free space, given by [22]

Ppr = 1

8k0 Z0
I0(2k0b) (24)

where I0 is the zero-order modified Bessel function.

IV. FIELDS AND POWERS OF GUIDED WAVES

The Fourier-integral expression of the secondary field in
region #0 (i.e., for y ≤ L) is written, by (8), (9), and (10a) as:

Esec(x, y; xC S, yC S)

= 1

4π

∫

C
u(λ)eg0(λ)(y+yCS−2L)e−iλ(x−xCS) dλ (25)

where

u(λ) =
[
g2

0(λ) − g2
1(λ)

]
sinh[g1(λ)w]

2g0(λ) �(λ)
. (26)

The integration path C is depicted in Fig. 2. The square
root g0 is defined (as mentioned above) as Re[g0(λ)] > 0
and Im[g0(λ)] > 0 by means of the branch cut selection
shown in Fig. 2, so that the decaying and outgoing wave
condition for y → ±∞ is satisfied at any point of C [36], [37].
The points λ = ±k0 are the branch-points and are always
associated with the infinite space or half-space wavenumber(s).
The above-mentioned real-valued propagation constants βq of
the lossless slab are shown in Fig. 2. They are the poles of
function u(λ), given by (26); other poles are complex and
located on the improper sheet of the corresponding Riemann
surface.

Now, to calculate the integral in (25), we assume that the
distance in x is large (i.e., take the limit as x → +∞) and
employ Cauchy’s residue Theorem. The integration contour is
deformed in the lower half-plane so that the poles, determined

Fig. 2. Integration path C for the integral in (25), expressing the secondary
(scattered) field in region #0. The contour deformation for the application of
Cauchy’s Theorem for x > 0 is also depicted.

by (11), are captured (see Fig. 2). In this way, we get

lim
R → ∞
ρ → 0

{∫

C
+

∫

C1
R∪ C2

R

+
∫

Cbc

+
∫

Cρ

}

f (λ) dλ → x→+∞

− 2π i
Q∑

q=0

Resλ=βq f (λ), (27)

f (λ) = 1

4π
u(λ)eg0(λ)(y+yCS−2L)e−iλ(x−xCS). (28)

Indeed, it can be shown that the integral around the small
circle Cρ centered at the branch point λ = +k0 tends to zero as
the radius ρ → 0. As noted in [8], [14], and [26], the integral
along the branch cut Cbc is referred as the lateral wave. The
main contribution to it is given by the integration in the vicinity
of λ = +k0 that can be expressed as asymptotic series of
algebraically decreasing terms x−m , m = 1, 2, . . . [23], [28].
Hence, the contribution of this integral vanishes as x → +∞.
Moreover, the integrals along the two quarter-circles C1

R and
C2

R vanish if R → ∞ (it can be shown that u(λ) → 0 as
R → ∞ and Im λ < 0).

To this end, only the contribution of the residues at the
guided-wave poles remains in (27). The residue at each pole
produces the respective wave’s field as follows:

Res
(

f (λ), λ = βe,o
q

) = 1

8π

(
g2

0

(
βe,o

q

) − g2
1

(
βe,o

q

))

× sinh
[
g1

(
βe,o

q
)
w

]
eg0

(
β

e,o
q

)
(y+yCS−2L)e−iβe,o

q (x−xCS)

g0
(
βe,o

q
)
�o,e

(
βe,o

q
) d�e,o(λ)

dλ

∣
∣
∣
λ=β

e,o
q

(29)

where βe
q and βo

q denote, respectively, the propagation con-
stants of the even and odd waves [i.e., the solutions of (12a)
and (12b)]. Now, by (25), (27), and (29), and after lengthy
calculations, we obtain

Esec(x, y; b, β) =
Qe
∑

q=0

A+
q,eeg0

(
βe

q

)
ye−iβe

q x

+
Qo
∑

q=1

A+
q,oeg0

(
βo

q

)
ye−iβo

q x (30)
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where

A+
q,e = i

(
a1

(
βe

q

))3 tan
(
a1

(
βe

q

)
w
2

)

2βe
q

(
k2

0 − k2
1

)(
1 + g0

(
βe

q

)
w
2

)

× eβe
qb cos β−g0

(
βe

q

)
(ib sin β+2L) (31a)

A+
q,o = − i

[
a1

(
βo

q

)]3 cot
(
a1

(
βo

q

)
w
2

)

2βo
q

(
k2

0 −k2
1

)(
1 + g0

(
βo

q

)
w
2

)

× eβo
q b cos β−g0

(
βo

q

)
(ib sin β+2L), (31b)

are the amplitudes of the even and odd guided waves traveling
along +x , while Qe and Qo denote, respectively, the total
number of the even and odd eigenwaves (thus, Qe + Qo = Q).
Also, we defined in (31) that a1(λ) = −ig1(λ) =
−i(k2

0εr − λ2)1/2.
Next, to calculate the integral in (25) for x < 0, we close

the integration path in the upper-half-plane. Then, by following
the similar techniques as in the previous case of x > 0, we
obtain the final expression for x → −∞

Esec(x, y; b, β) =
Qe
∑

q=0

A−
q,eeg0

(
βe

q

)
yeiβe

q x

+
Qo
∑

q=1

A−
q,oeg0

(
βo

q

)
yeiβo

q x (32)

with the amplitudes of the even and odd guided waves travel-
ing along the −x-direction, respectively, given by

A−
q,e = i

(
a1

(
βe

q

))3 tan
(
a1

(
βe

q

)
w
2

)

2βe
q

(
k2

0 − k2
1

)(
1 + g0

(
βe

q

)
w
2

)

× e−βe
q b cos β−g0

(
βe

q

)
(ib sin β+2L) (33a)

A−
q,o = − i

(
a1

(
βo

q

))3 cot(a1
(
βo

q

)
w
2 )

2βo
q

(
k2

0 − k2
1

)(
1 + g0

(
βo

q

)
w
2

)

× e−βo
q b cos βe−g0

(
βo

q

)
(ib sin β+2L). (33b)

Note that, as expected, for the normal incidence, i.e., for
β = π /2, we have A+

q,e = A−
q,e and A+

q,o = A−
q,o, that is

the guided-wave powers split equally between the +x and
–x directions.

The powers carried by the guided waves are then calcu-
lated from (30) and (32) by using the norms of the waves.
More precisely, the even and odd eigenwaves are given
by [29]

�e
q(x, y) = Kee−iβe

q x V e
q (y)

= Kee−iβe
q x

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
(

a1
(
βe

q

)w

2

)
e−g0(β

e
q)(y−(L+w)),

y > L + w

cos
(

a1
(
βe

q

) (
y − L − w

2

))
,

L < y < L + w

cos
(

a1
(
βe

q

)w

2

)
eg0

(
βe

q

)
(y−L),

y < L

(34a)

�o
q (x, y) = Koe−iβo

q x V o
q (y)

= Koe−iβo
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where Ke and Ko are normalization parameters. With the help
of [26, eq. (49)] and [27, eq. (7)], we get the norms of the
guided waves, which can be used to normalize their powers
as:
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The powers of the guided waves traveling in the +x- and
–x-directions are denoted by Pgw+ and Pgw−, respectively.
To calculate the latter guided-wave powers, we make the
following considerations. By means of (30)–(34), we rewrite
the secondary electric field’s expressions Esec± for waves
traveling parallel to the ±x-directions, respectively, as:
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Ã±
q,e V e

q (y)e∓iβe
q x

+
Qo
∑

q=1

Ã±
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Ã±
q,e = i

(
a1

(
βe

q

))3

2βe
q

(
k2

0 − k2
1

)(
1 + g0

(
βe

q

)
w
2

)
tan

(
a1

(
βe

q

)
w
2

)

cos
(
a1

(
βe

q

)
w
2

)

× e±βe
q b cos β e−g0

(
βe

q

)
(ib sin β+L) (37a)

Ã±
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Finally, by using (36), and considering [25, eq. (25)],
[26, eq. (10)], and [27, eq. (7)], we get the expressions
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where Z0 = (μ0/ε0)
1/2 is the free-space impedance.
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Fig. 3. (a) Dispersion curves of the first three guided waves of the dielectric
slab TEq , q = 0, 1, 2. (b)–(d) Normalized guided-waves powers Pgw±/Ppr

and space-wave powers Prad±/Ppr versus k0w for εr = 5, k0 L = 0.21 under
the normal incidence of CSP beam, β = 90◦ with (b) k0b = 0.2, (c) k0b = 2,
and (d) k0b = 20.

Note that, in general, any CSP beam excites the guided
waves in both directions along the slab, though their ampli-
tudes can be very different (this is demonstrated for near-
grazing incidence by the numerical results of the next section).

Fig. 4. Normalized total far-field patterns for a slab with k0w = 0.75, εr = 5,
and CSP with parameters (a) k0b = 0.2, k0 L = 0.21. (b) k0b = 2, k0 L = 2.1.
(c) k0b = 20, k0 L = 21. For each case, three CSP orientation angles are
considered: β = π /6, π /3, and π /2 as indicated by the corresponding arrows
of the same color. The thick horizontal black line marks the presence of the
slab. (a) Wide beam incidence. (b) Moderate beam incidence. (c) Narrow
beam incidence.

V. NUMERICAL RESULTS AND DISCUSSION

To study the distribution of power fractions between the
space waves and the guided waves, we have computed the
dependences of these quantities on the electric thickness of
the slab, i.e., the normalized frequency (Fig. 3). As known,
the principal, even-type guided wave of the slab (TE0) has
no cutoff frequency, i.e., propagates along any finite-thickness
slab, no matter how thin. However, if k0w(εr − 1)1/2 = qπ ,
q = 1, 2, . . ., then the higher-order guided waves (TEq)
start propagating as well [Fig. 3(a)]. These values are the
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Fig. 5. Same as in Fig. 4, however, for k0w = 1.5. (a) Wide beam incidence.
(b) Moderate beam incidence. (c) Narrow beam incidence.

branch points of the field as a function of the frequency.
Therefore, the curves on the other panels display sharp bends
at these frequencies, especially clearly visible on Fig. 3(b).
These panels correspond to three different CSP beams: wide
[Fig. 3(b)], moderate [Fig. 3(c)], and narrow [Fig. 3(d)].
Note that the transmitted space-wave powers Prad+/Ppr reach
maxima at almost the same values of k0w in all three cases.
These values are very close to the natural frequencies of
the slab as open dielectric cavity (marked with stars) [38].
Asymptotically, they are given by (m = 0, 1, 2, . . .)

(k0w)m = π(m + 1)ε
−1/2
r + i(1/2) ln

[(
ε

1/2
r +1

)
/
(
ε

1/2
r −1

)]
.

(39)

Fig. 6. Normalized radiated powers (a) Prad−/Ppr and (b) Prad+/Ppr versus
the CSP beam incidence angle β, for k0w = 1.5, εr = 5, and k0b = 0.2,
k0 L = 0.21 (blue solid lines), k0b = 2, k0 L = 2.1 (red dashed lines), and
k0b = 20, k0 L = 21 (green dashed-dotted lines).

Fig. 7. Normalized guided-wave powers Pgw±/Ppr [given by (38) and
corresponding to waves traveling in the ± x-direction, respectively] as
functions of the CSP beam orientation angle β for (a) k0b = 0.2, k0 L = 0.21,
(b) k0b = 2, k0 L = 2.1, and (c) k0b = 20, k0 L = 21, and a slab with
k0w = 1.5, εr = 5.

At these resonant frequencies, the space-wave power below
the slab, Prad−, exhibits extrema; either maxima for a wide
beam [panel (b)] or minima for a narrow beam [panel (d)].
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Fig. 8. Normalized guided-wave powers Pgw±/Ppr and space-wave powers
Prad±/Ppr± versus k0w for the near-grazing CSP beam incidence at β = 5◦,
and (a) k0b = 0.2 and k0 L = 0.21, (b) k0b = 2 and k0 L = 2.1, and
(c) k0b = 20 and k0 L = 21, respectively.

Additionally, unlike a wide beam, for the narrow beams the
powers of the guided waves are very low. Thus, almost all
the power goes through such a slab. Indeed, the frequencies
of k0w = π(m + 1)ε

−1/2
r , m = 0, 1, 2, . . ., are known as full

transparency conditions for the lossless slab illuminated by the
normally incident plane wave (see [39, Sec. IV-C]). Further,
for the narrower beams [panels (c) and (d)], one can see the
effect of the almost equal splitting of the space wave power
between the transmission (upper) and the reflection (lower)
half-spaces at k0w = π(1/2 + m)ε

−1/2
r , m = 0, . . . i.e., at the

quarter-wavelength in material slab thickness.
Fig. 4 depicts the normalized total far-field patterns for a

single-mode slab with k0w = 0.75 and εr = 5, excited by
three CSP beams with β = π /2, π /3, π /6, and distances from

Fig. 9. Color maps of the normalized (a) guided-wave powers Pgw+/Ppr and
(b) and (c) space-wave powers Prad±/Ppr versus k0w and β, for k0b = 0.2
and k0 L = 0.21.

the CSP center to the slab k0 L = 0.21, 2.1, 21, respectively;
thus L > b|cosβ| and the aperture does not intersect or touch
the slab.

Evidently, more directive CSP beams (i.e., with increas-
ing k0b), yield more directive far-field patterns. Besides,
narrow CSP beams [panels (b) and (c)] show the mentioned
power splitting as the selected thickness is quite near to the
“quarter-wavelength in material” value. This effect, however,
is degraded if the incidence deviates from normal, so that
more power is reflected than transmitted. In contrast, if the
thickness of the same slab is taken as k0w = 1.5, as in Fig. 5,
we see almost total transmission of the narrow beams
[panels (b) and (c)]. This is because here the normalized
frequency is close to the “half-wavelength in material” that
is the same as the “full-transparency for the plane wave”
condition, mentioned above. This effect also gets degraded
if the beam incidence is inclined or if the beam becomes less
narrow.

In Fig. 6, we depict the normalized total space-wave powers
Prad−/Ppr and Prad+/Ppr, versus the CSP orientation angle β
for a slab with k0w = 1.5 and εr = 5, and CSP apertures:
1) k0b = 0.2, k0L = 0.21; 2) k0b = 2, k0 L = 2.1; and
3) k0b = 20, k0 L = 21. As visible, if the CSP beam
“looks at the slab,” then the effect of nearly full transparency
plays major role. The corresponding plots take shape of
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Fig. 10. Same as in Fig. 9, however, for k0b = 2 and k0 L = 2.1.

two complementary unit step functions if the aperture gets
larger and, thus, the beam gets more collimated.

Intuition suggests that the grazing incidence of the beam
(i.e., β = 0 and π) is more favorable for the guided-waves
excitation. To check this, in Fig. 7, we show the normalized
guided-waves powers Pgw+/Ppr and Pgw−/Ppr versus the
CSP angle β. The slab and beams are the same as in Fig. 6.
Each of these curves has only one maximum either at β = 0
or β = π . Thus, the guided waves are indeed excited most effi-
ciently if the CSP beam is in the grazing incidence; although
the more collimated the beam the smaller the power of the
guided wave. Note that at the grazing incidence, only one
guided wave is excited with reasonable amplitude, traveling
in the same direction where the beam is “looking,” while the
amplitude of the oppositely traveling wave remains far smaller.

To clarify the efficiency of the guided-wave excitation, we
computed the associated power fractions versus the normalized
frequency for the near-grazing incidence, β = 5◦, of the
same three CSP beams as before. These results are shown
in Fig. 8. Together with Fig. 3, they convincingly reveal
that the near-grazing beam incidence is accompanied by the
launching of intensive guided waves of the slab each time
the normalized frequency crosses the corresponding cutoff
value. This is valid for the principal guided wave TE0 that has
zero cutoff frequency. At the same frequencies, the transmitted
space-wave power reaches a maximum while the reflected

Fig. 11. Magnitude of the total electric field as computed by COMSOL
for a dielectric slab with k0w = 1, εr = 5 and a CSP beam with k0b = 2,
k0 L = 2.1 and (a) β = 90◦, (b) β = 45◦, and (c) β = 0◦. The free-space
wavelength λ0 is also depicted.

power drops to a minimum and the narrower the beam,
the sharper these effects and closer to the cutoff frequency.

To obtain a better insight into the revealed phenomena,
we computed the color maps (i.e., reliefs) of the above
normalized powers as function of two variables: the nor-
malized frequency and the CSP beam incidence angle. They
are presented in Figs. 9 and 10 for two beams, wide and
moderately narrow, respectively. Note that the curves of
Figs. 9(b) and (c) and 10(b) and (c) for the space-wave powers
Prad±/Ppr are depicted for the CSP orientation angle β lying
in [0◦, 90◦] due to the obvious symmetry with respect to the
normal incidence. Importantly, the maps of Figs. 9 and 10
support our main finding: the guided wave of the dielectric
slab waveguide is efficiently excited by a CSP beam in the
grazing illumination regime. Although this effect is degraded
if the beam becomes more collimated, the guided waves can
carry the power, which is comparable and even larger that
the power of the space waves, i.e., reflected and transmitted
beams. On the one hand, this effect can be used for designing
surface-wave launchers. On the other hand, it should be taken
into account, for instance, while designing the flat radomes
of phased-array antennas where the guided waves should be
eliminated.
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Fig. 12. Same as in Fig. 11, however, for k0w = 1.6.

VI. VALIDATION

As evident, our full-wave analytical solution does not use
any meshing of any computational domain and any other
discretization of the problem. Therefore, it does not suffer
from bad convergence and needs only a moderate desktop
computer to produce the results with machine precision.
In fact, these results can be viewed as reference data for
the partial validation of commercial codes or less accurate
numerical techniques and algorithms. As an example of such
validation, we simulated with the aid of COMSOL Multi-
physics [40] several slab-CSP configurations considered in
the previous sections. COMSOL is a widely used commercial
code based on discretization of the considered space, solution
of wave equation in each domain of mesh, and enforcement
of boundary conditions along neighboring domains, namely
implementation of the finite element method (FEM). In this
connection, our aim was to check the most interesting finding
of the analytical treatment: is it true that a nearly graz-
ing CSP beam is able (in sharp contrast to a plane wave)
to efficiently excite the guided waves of a dielectric slab?
We selected two values of the slab electric thickness, k0w = 1
for a single-wave slab and k0w = 1.6 for a two-wave slab, a
moderately narrow CSP beam with k0b = 2, and three values

of the beam orientation angle, β = 90◦, 45◦, and 0◦ (grazing
incidence). Near fields computed with COMSOL, are shown
in Figs. 11 and 12. As one directly observes, the normally
incident CSP beam partially goes through the thinner slab
and almost completely through the thicker slab. In addition,
no guided waves appear on the slab in each case. This is in full
agreement with the curves in Fig. 3(c) depicting the fractions
of power radiated into the lower and upper half-spaces. If the
CSP beam illuminates the same two slabs under β = 45◦,
then the emergence of one-side guided wave becomes clearly
visible in the field patterns, namely the principal wave TE0
on the thinner slab and the first higher-order wave TE1 on
the thicker slab. Finally, at grazing incidence (β = 0◦) the
guided-wave magnitude in each case becomes comparable to
the space-wave values near the CSP. This is again in full
agreement with our accurate findings presented in Fig. 10 for
the same beam as in the COMSOL setting.

Thus, our main result is fully supported by commercial
code simulations. The demonstrated good agreement can be
interpreted as a validation of our work. From a different
point of view, it can also be seen as a partial validation of
COMSOL, which is a well-reputed code, though its accuracy
is not generally accessible in principle.

VII. CONCLUSION

We have analytically solved the scattering problem of
a CSP beam exciting a lossless dielectric slab. Numerical
results on the variations of the guided-wave and space-
wave powers versus the beam and slab parameters and the
operating frequency have been presented, which reveal that
the guided waves of the dielectric slab, neglected in earlier
publications, can be efficiently excited by a CSP beam in
the grazing and near-grazing regimes. This finding is fully
supported by the visualization of the near-field patterns for the
same configurations with help from COMSOL software. The
solution of a similar problem with two different semiinfinite
media above and below the lossless dielectric slab is of
significant mathematical/physical interest due to the presence
of two different branch points and constitutes a future work
direction.
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