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TARA-Like Shield-Assisted Paraboloidal Reflector
Antenna Using a Nystrom-Type Method
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Abstract—Using the recently developed method based on the
rigorous theory of singular and hypersingular integral equations
(IEs) and Nystrom-type discretization, a paraboloidal reflector
assisted with a conical shield is investigated. To decrease the
computation time we propose a new method of calculation of
the Modal Green’s Functions in the quasi-optical range. The
far and near fields of the studied reflector are analyzed in the
transmission and reception cases, and reveal fine features that
escape asymptotic analysis. Elementary numerical optimization of
the shield-assisted paraboloidal antenna is performed.

Index Terms—Body of revolution (BOR), complex Huygens ele-
ment, conical shield, directivity, focusing, integral equation, modal
Green’s function, reflector antenna.

I. INTRODUCTION

RANSPORTABLE atmospheric radar (TARA) is a real

system used at the Delft University of Technology for
studying atmospheric phenomena such as clouds, precipitations
and clear air turbulence [1], [2]. It has two antennas mounted
on a common platform. Each antenna is a combination of a
paraboloidal reflector and a conical shield, and can be viewed
as a two-reflector antenna where reflectors are welded together
along the rim of the paraboloid. The aim of such a design is to
reduce the signals received from all directions below the plane
of the paraboloid rim to —70 dB and lower, because normally
TARA looks into the zenith and only the signals reflected from
that direction are relevant.

The radiation pattern of the full TARA system has been suc-
cessfully simulated in [2], [3] using the electric-field integral
equation (EFIE) solved using the multilevel-fast-multipole or
modified method-of-moments algorithm (MLFMP-MM) with
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the Rao-Wilton-Glisson (RWG) basis functions [4]. In addition
to the reflector, the authors of [2], [3] took into account the pres-
ence of struts and feed housings. As a result, they did not exploit
the rotational symmetry of reflector itself and therefore had to
deal with large-size matrices. From the modelling point of view
more stressful is the fact that the convergence of MLFMP-MM
has not been proven mathematically.

The IE-based methods have been used in the numerical
modeling of three-dimensional (3-D) electromagnetic wave
diffraction by arbitrary PEC screens (i.c. finite zero-thickness
surfaces) since long ago [4], [5]. Here, rotationally symmetric
PEC screens occupy a special place. This is because the sym-
metry can be taken into account analytically, and the 3-D
problem can be reduced to an infinite set of 1-D IEs for the
independent azimuthal harmonics that significantly decreases
the order of the final matrices. The papers [6]-[8] have been in-
strumental in the analysis of such screens and other rotationally
symmetric scatterers.

Discretization plays a very important role in the numerical
solutions of IEs. In the present paper the same problem as in
[2], [3] is numerically studied using a Nystrom-type meshless
discretization. This means that the unknown smooth function
is approximated by a polynomial of high enough order and in-
terpolation-type quadrature formulas with theoretically proven
convergence are used to compute the integrals. In 2-D, this tech-
nique has been successfully used in [9]-[12] to analyze the scat-
tering and focusing by single and multiple PEC and imperfect
screens. The 3-D case is more complicated however recently
we have developed a corresponding algorithm [13], [14] that
exploits rotational symmetry, leads to small matrices, and has
guaranteed convergence. As all basic equations of these works
are valid for arbitrary PEC screens with rotational symmetry, we
will not present them here and, instead, make necessary refer-
ences. We will therefore emphasize numerical results obtained
with this accurate method in the analysis of the TARA reflector
antenna.

The separation of the azimuth harmonics shifts the computa-
tion time expenditures to the calculation of the modal Green’s
function (MGF) [15]-[23]. Each of these papers presented a
way to calculate the MGF in a certain domain of parameters.
However all these methods depend on the electrical size of the
scatterer contour and lose efficiency and accuracy if this size
increases. In the quasi-optical case the MGF is an integral with
a rapidly oscillating integrand and therefore these methods
work slowly. Derivation of a formula which does not depend
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Fig. 1. The cross-section geometry of the TARA-like reflector and CHE feed.

on the electrical size of reflector and has exponential conver-
gence is crucial for the accurate analysis of the TARA and any
other large-size reflector far-field and near-field on a personal
computer.

The problem formulation is presented in Section II. In
Section III, we model the feed using a complex Huygens ele-
ment (CHE). In Section IV, we derive a series representation
for the calculation of MGF. Section V is dedicated to an inves-
tigation of the near and far fields of the TARA-like reflector in
the transmission (CHE-fed) and on-axis reception (plane-wave
fed) cases. Conclusions are summarized in Section VI. Time
dependence is exp(iwt) and & = w/c is the wavenumber (¢
being the light velocity).

II. PROBLEM FORMULATION

Fig. 1 shows the cross-sectional geometry of the TARA-like
antenna without struts and feed housings. The working wave-
length is supposed to be A = 9.1 cmi. The main paraboloidal
reflector has a diameter d of 3 meters or 33\ and its focal dis-
tance is f = 0.5d. The shield has a width [ of 2 meters or 22
and an angle of inclination #, = 30°.

Asusual, we consider the total field to be a sum of the incident
and scattered fields, E**' = E + E°. For unique determination
of the unknown scattered field, it must satisfy Maxwell’s equa-
tions outside the reflector, the Sommerfeld radiation condition,
the Meixner edge condition, and the PEC boundary condition on
the surface of the reflector. For modelling the TARA in the trans-
mission case, the feed will be simulated using a CHE placed at
the geometrical focus of the paraboloidal part of reflector (see
Section III). For modelling the TARA in the reception case, we
will consider the incident field as a plane electromagnetic wave
propagating along the axis of the reflector.

Exploiting the rotational symmetry of the TARA reflector,
we represent the unknown current density as a Fourier series
in the azimuth angle ¢ : j(t,%) = Yoao_ ___jM(1)e™MY,
where ¢ is the parameter of a rotational contour parameteriza-
tion. In [12]-[14] the diffraction by a PEC axially symmetric
screen has been reduced, for each M -th azimuthal harmonic of
the current density components, to two coupled 1-D IEs with
varying coefficients. One of these IEs is hypersingular and the
other is singular. Their meshless discretization is based on the
Nystrom-type scheme and specifically tailored quadrature for-
mulas of interpolation type [10], [11], [24]-[26]. This method
has guaranteed (mathematically proven) convergence for arbi-
trary frequency and other parameters, i.e. in the full range from
statics via resonance range to quasi-optics. The rate of conver-
gence is very fast if the order of interpolation is larger than the
electrical length of reflector’s cross-sectional contour (length
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Fig. 2. Smoothing of the shield-assisted paraboloidal reflector contour.

times wavenumber). From the solutions of these IEs the surface
current and the scattered field are obtained.

However, if the reflector size lies in the quasi-optical range
the method of [12]-[14] can be improved even further to pro-
vide faster computations. These improvements relate to the cal-
culation of MGF's and will be considered in Section IV.

Besides, the rate of convergence of the method considered
strongly depends on the contour smoothness. The contour of the
TARA reflector has a bend between the parabola and the straight
interval corresponding to the shield. Suppose that p(s), z(s) is
the natural parameterization of the shield-assisted paraboloidal
screen contour (the expressions of this parameterization have
been established), where s is the arc length counted from the
paraboloid vortex. Denote also the parabolic-part length as { p,,»
and the shield-part length as [s;,. Now, fix the points A and B
on the rotation contour, so that the parameter corresponding to
A (B) is smaller (larger) than the parameter corresponding to
the bend point (Fig. 2).

Suppose that [ 45 is the contour length between the points
A and B. Then the parameter value {4 = Ipgr + 9 — lan,
s0 € (0,lap) corresponds to the point A and the parameter
value Ip = Iper + 50,80 € (0,{4p) corresponds to the point
B. To approximate the bend between points A and B, one can
use a spline. There is a set of splines with two parameters, s¢
that is the distance from 5 to the bend point and [ 4 5 that is the
length of interpolated arc. We have chosen the spline with the
smallest length as a function of sy. If [ 45 is smaller, then our
spline is nearer to the bend. Our numerical experiments for the
TARA-like reflectors have shown that the values of [4p = A
and smaller provide 10~ relative difference in the far field.
Therefore we below consider the shield-assisted paraboloidal
reflector with a smoothed bend characterized by {45 = A.

III. MODELLING THE FEED

When modeling the TARA antenna in the transmission case
we assume that the feed is a Complex Huygens Element (CHE).
The CHE is a convenient simplified model of a realistic circular
corrugated-horn or horn-lens antenna. Its field function depends
on the parameter “b” that is formally the imaginary part of the
source location point. If » = 0 then the field function coincides
with the field of the classical Huygens Element (HE) which con-
sists of elementary electric and magnetic dipoles placed orthog-
onal to each other. As known, the HE has fixed far-zone direc-
tivity equal to 3. If b is increased, then the directivity of such
a modified source can be made larger both in the far and near
zone, and, correspondingly, the reflector edge illumination can
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be lowered. Therefore such a feed is convenient for simulating
the incident fields in the modeling of reflector antennas.

Consider the electric field of a CHE placed on the 2z axis and
shifted by the distance zq along the z-axis. ECHE = FCFED 4
ECMD \yhere ECED (FCMDY s the electric field of a com-
plex electric (magnetic) dipole oriented in parallel to the x(y)
axis. The field components are found explicitly as

_ikR J
CED _°¢ (2 ) 2 9 ainl ! ik
ES _TECOS¢|:(COS f — 2sin 9)(@"’?)
—k? cos? 0] ey
. kR ;
cEp_  te¢ P 1 ik .2
ES =- v blIl(p(ﬁ‘l'E_l") @)
—ikR 3 3ik
ESED:JE = %cosipsin@coM(ﬁ-F%kz) (3)
CMD e '
E - _ ( = )cos@cosnp(l/R‘i‘zk) Q)
FCMD _ <cikR) cos@sin o(1/R + ik) ®)
® R
CMD _ e .08 i
ES — = sin  cos p(1/R + ik) (©)

where R = [p? + (z — 2z — ib)?]"/2, b > 0. This field function
satisfies Maxwell equations exactly and has a circle of branch
points at z = zg, p = b, ¢ € [0, 27, which can be conveniently
considered to represent the aperture rim of the real horn.

The far-field pattern of such a feed is introduced as F (8,0) =
ng};o E(R. 6, ¢)Re™*E and its components are

FfED =iksin ¢ - exp [—ik cos 8(ib — zp)] ™
FSA’ID =ik cos B sin ¢ - exp [—ik cos B(ib — 2)] ®)
FEED — _ikcosgcosf - cxp [—ik cos0(ib — %)) (9)
FSMD = —ikcosp - exp[—ikcosf(ib — z)]. (10)

As we can see from (1)—~(10), the CHE field has only two
Fourier components, with M/ = 1 and M = —1. However,
one needs to calculate only one component of the current, be-
cause 5 (1) = 55 V(8), 50 (1) = —j5 (1), see [12]-[14]
for details.

In Fig. 3, we show the dependence of the directivity,
D = Ax|F"' 7, 0)PP~', P = [o|F"(0,¢)]?dS of a
TARA-size paraboloidal reflector without a shield illuminated
by the in-focus CHE versus the CHE aperture parameter £b.
One can see that the optimal value kb = 2.37 corresponds to
the edge illumination of —5.619 dB. We use a CHE with this
optimal parameter in the study of all further configurations.

Fig. 4 shows the far-zone radiation patterns in the E- and H-
planes of the TARA parabolic reflector without a conical shield
when it is illuminated by the optimal CHE and by the classical
HE (b = 0). As visible, illumination by CHE provides much
lower sidelobes, thanks to lower edge illumination.

In Fig. 5, we visualize, on the logarithmic scale, the near-
zone E-field in the E- and H-planes of the parabolidal reflector
illuminated by the HE.
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Fig. 3. The directivity of a stand-alone paraboloidal reflector illuminated by
CHE as a function of the aperture size parameter (solid line) and the edge illu-
mination (dashed-line).
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Fig.4. The total far-zone radiation patterns in the H-plane (top) and the E-plane
(bottom) of bare paraboloidal reflector illuminated with the in-focus HE and the
CHE with the optimal aperture parameter.

-50 dB -20 dB -10dB 0dB

-40 dB

-30dB

Fig. 5. The near field of the paraboloid illuminated by a HE for f = d/2 and
d = 33\ in the H-plane (left) and the E-plane (right).

For comparison, in Fig. 6 we visualize the near-zone E-field
of the paraboloidal reflector illuminated by the optimal CHE in
the E and H-planes.

The near-field patterns show, in agreement with the far-field
pattern, that the use of the optimized CHE instead of a HE
lowers the edge illumination and consequently dampens the
sidelobes, including the spillover sidelobe.
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Fig. 6. The same as in Fig. 5 for the paraboloid illuminated by a CHE with the
optimal aperture-size parameter kb = 2.37.

IV. CALCULATION OF MGF IN THE QUASI-OPTICAL RANGE

In the quasi-optical range of d > A the unknown current den-
sities have many oscillations on the reflector surface. This calls
for high order discretizations of our IEs. Moreover, below we
present the results of a partial optimization of the TARA geom-
etry based on the variation of two parameters of our IEs: the
TARA-reflector shield inclination angle and the shield width.
This entailed multiple calculations of MGF functions for electri-
cally large reflectors. Presented in this section is a new formula
for computation of the MGF that greatly reduced computation
time.

First of all, we introduce some notation. If¢ is the integration
variable, we will use the cylindrical-coordinate notations of the
rotation contour parameterization like pg = po(t), z0 = 2z(¢),

€ [-1, 1], while for the observation point on the contour of
rotation the notations will be p = p(7),z = z(7), 7 € [-1,1].
Each integration point on the surface is defined by the parameter
t and the azimuth angle ¢, and the observation point is defined
by the parameters 7, ¢.

The MGF is the M-th term of the Green’s function
exp(—ikL)/kL expansion into the Fourier series in the
azimuthal variable. The calculation of the MGF

27
Shr = / WCOS(MWM (1)
/ :
L= [02 + pi — 2ppo cos i + (z — zoﬂ T2

and its first and second derivatives is the most time-consuming
operation. Here, L is the distance between the observation point
with parameter ¢ = 0 and the integration point with parameters
i, t.

Changing the integration variable in (11) to

= L(y) o
we arrive at
Lo
exp(—iku)Tas [g(u)] du (14)

Sy =4
‘ 4/ kl(u? = L3,) (L3

) max
Limin min

2)]%
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where Ty () is the Chebyshev polynomial of the first-kind

g(u) = [p* + pg + (2 — 20)* — u”] - (2ppo) ™"
L2 =(p—p0)* + (2 — 2)*

L?nax = (P + /)0)2 + (’Z - ZU)Q'

The calculation of the function S;sis needed to obtain the
values of IE kernels and the near field [14]. In the case of ¢ — T
(that means Ly;,, — 0), we have Sy — oo. This case appears
in the IE kernels calculation [14] and they have finite limiting
values which can be obtained analytically using the asymptotic
behavior of the MGF—see [6] and Appendix. Therefore we are
more interested in the case of Ly,;, # 0.

If Loin = O then the kernels in the IE have finite limits,
which are calculated using the asymptotic behavior of the MGF
[6]. Next we consider the case of Ly,;, # 0. Introduce a real
function

Tas [g(u)]
k\/(’lt + Lmin)(u + Lmax)

then substitute u{#) = [Lmin(1 —2)+ Lax(1+2)]/2 into (14)
to obtain the term (1 — #2)*/2 in the denominator of integrand
(similarly to the integral representation of the Bessel function
that we use in (19) below), and change integration variable to
cos()). After this we obtain

1
Sy =4C - /exp
2

where C' = exp[—ik(Limax + Luin)/2], @ =
Lmin)/2' -

Note that the function f(z) = f[w(z)] is infinitely differen-
tiable and has only M oscillations (if CHE is placed on the z
axis then M = 1) Therefore it can be interpolated with low
order f(x) &~ f,_1(r). Any infinitely differentiable function
can be expressed in the form of

) =

(15)

zQz),};Q[U( )](]1 (16)

k(LIIIaX -

f T) = Z apTy(z) [-1.1] (17)
p=0
Sp0 [ To(x)f
2— 4, z)f(x
CLI; _ p,O / p(q)f(q)dl (18)
T 1 — 22
-1
where 6, 0 = 1 if p = Oand 0 otherwise.
Using the formula [27, 7.355]
1 T
/ emm\/ln—i%dm — ()" T () (19)

21
and (16), (17) we obtain the expression for the MGF in the form
of the series

o

Su =407 (=i)Pa, ], ()

p=0

(20)

where .J,,() is the Bessel function of order .
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Because of the infinite differentiability of the function f(zx),
the terms of the series (20) tend to zero with an exponential rate
if p — oc.

Let us evaluate the number of terms we need to calculate
in the series (20). To this end, we have to find the polynomial
which interpolates the function f () with small enough relative
error. Because of the factor h = [u + Lpin] /2 the function
f(u) in (15) has a large derivative at u = Ly, in the case of
Linin — 0. To find the degree of the polynomial which interpo-
lates the factor % as a function of z, we obtain it exactly for the
mentioned function,

Z b,T,

p=0

)+L h

b — 2 2 / TP('T)
P ™ 3Lmin+LInax 7 (1"’04511) \% 1—a2

de, p>1  (22)

where @ = (Liax — Lmin)/(3Lmin + Lmax), 0 < a < 1.
Substituting © = cos(¢) in (22) and taking into account [27,
3.613] we have

™
cos(py) by
1+ acos z/J

b 2
v ™ 3me + Lmax
0

4 1 1—a?2-1

= L (e (23)
3Lmin + Lmax v1 — a2 a

Therefore |b,| < ¢ if

Ine+1In ((3Lmin + Lmax )V 1 — a2) —In(4) 5
> In (m - 1) — In(a) = N()
(24)

Hence, as function f(u(x)) has M oscillations, for a suf-
ficiently small error it is necessary to calculate the first n =
N(e) + M terms in the series (20), where N () is the first in-
teger larger than N (¢). To calculate the coefficients a,, we use
the quadrature formulas [24]

y,0 n n
= ] Z T tm f"lfl (fm,)

m=0

where ) = cos(w(2p+1)/2n),p = 0,1,...,n—1 are the roots
of the Chebyshev polynomial of the first kind. Because of the
infinite differentiability of the integrand in (18), the quadrature
formula (25) has exponential convergence.

Note that J,,(2) quickly tends to zero if p > €. Therefore,
in the case of certain parameters of the MGF we do not need to
calculate all of the first n items in (20). From [28, 9.1.62] we
have

(25)

(5)" 26)

m/!
V2rm{m/je)™, the

e

| Jm ()] <

Using the asymptotic expression m! =~
Bessel function can be approximated as

1 Tee\™
‘Jlm(:]:” mzﬁo orm (9—>
¢ 2mm \ 2m

If mm > we/2 then in the right-hand side of (27) we have
the powers of the quantity smaller than unity. Numerical ex-

@7
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periments show that it is enough to take ny = min{n,m},
m = Qe/2 + 5 terms in (20) for the accuracy of 1010,

The use of the fast Fourier transform (FFT) can decrease the
time required for calculation of ¢, (25). We apply the FFT to
calculate

@ = Fop fn (28)
where Fy, = ({oxp(—ilph/2m2m)2it. fu =
(f07-~-7fn 1. ) {fp};;é = {fn 1(7m)}n 1. The

coefficients a,, are expressed through a,, in the following way:

a, = Relexp(—2mi/n)a,] - (1 4+ 6,0)/n (29)

The series for the first and the second derivatives of the MGF
are derived in an analogous manner. However we need to find
the degree of the interpolation polynomial, which approximates
the second and the third powers of the factor g(«). For this pur-
pose we use the expression [27, 3.613]:

] cos(n) = 77(1,”2?
, —a
0

la| < 1 (30)

1—2acost + a? 1

Note that in the case of small Ly, (k + Limin < 2) the series
presented in [6, p. 236] converges faster than (20).

Finally, we compare the above mentioned with the approach
of [14] to the calculation of MGF. To interpolate the integrand
of (11) in [14], we used a trigonometric polynomial. Roughly,
the order of this polynomial is proportional to the integrand os-
cillation number n = k - (Lmax — Lmin)/7m + M. For the
accuracy 107 it is enough to set the interpolation order 5.
In the method presented here it is necessary to use the inter-
polation polynomial for the function f(x) which has only M
oscillations. Therefore, to have the same accuracy we need to
compute 5k + (Lmax — Limin)/7 less coefficients of the inter-
polation polynomial than before, if using the approach of [14].
Thus, quadrature formulas using like in approach [14] requires
multiple calculations of MGF functions for electrically large re-
flectors. The new MGF calculation approach presented in this
section has greatly reduced the computation time with the same
accuracy.

V. NEAR AND FAR FIELDS OF THE TARA-LIKE REFLECTOR

A. Transmission Case

In Fig. 7, the H- and E-plane far-zone radiation patterns of the
TARA-like paraboloidal reflector with (red curves) and without
(blue curves) conical shield are compared.

One can see that in the direction which is orthogonal to the
axis of rotation (6 = 90%), and near to it, the TARA radiation
pattern has lower sidelobes than the parabolic reflector alone,
by some 20 to 30 dB. The CHE here was taken in such a way
that it provided the maximum directivity for the stand-alone
paraboloidal reflector.

As one can see, for # = 90° the blue curves differ by some
15 dB from the patterns in Fig. 8 of [3]. This difference can be
attributed to the presence of struts and three feed housings in the
computations of the patterns in Fig. 8 of [3].
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Fig. 7. The total far-zone radiation patterns of the TARA paraboloidal reflector
without the conical shield and full TARA-like reflectors illuminated by the op-
timal CHE, in the H-plane (top) and in the E-plane (bottom).

Fig. 8. The near-field of the full TARA-like reflector illuminated by the CHE
with the optimal parameter in the H-plane (left) and the E-plane (right).

The calculation time of a far-field pattern is around 100 s on
a PC with Intel Core 2 Duo CPU E8400 3.00 GHz and 2 GB of
memory. This seems to be several hundred times faster than the
code used in [2], [3] (newer versions of that code may reduce
this to the factor of 10 [29]).

In Fig. 8 we show, on the logarithmic scale, the near-zone
field |E%|/|E°| of the full TARA fed by the optimal CHE, in
the E and H-planes. One can notice a deeper shadow behind the
reflector assisted with a shield than in Fig. 6.

B. Reception Case

In this case, the incident plane electromagnetic wave is
assumed to propagate along the z-axis direction. It is inter-
esting to compare the near fields | E%°t| /| E°| of the stand-alone
paraboloidal reflector (Fig. 9) and the full TARA-like reflector
(Fig. 10).

In Fig. 10 we can see an interesting phenomenon that has
escaped geometrical-optics descriptions and the MLFMA-MM
simulations in [2], [3].

In addition to the main focal spot (area of the field concen-
tration), there is another parasitic “focus” near the paraboloid
vertex, split into two bright spots in the H-plane.
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Fig. 9. The near-field of the TARA-like stand-alone paraboloidal reflector illu-
minated by the on-axis plane wave in the H-plane (left) and the E-plane (right).

0, 10, 20,

30, 43,
[ |

Fig. 10. The near-field of the TARA-like shielded reflector illuminated by the
on-axis plane wave in the H-plane (the first plot at the left) and the E-plane (the
second plot), the field inside the black rectangle in the H-plane (the third plot)
and the E-plane (the fourth plot).

These areas of additional field concentration appear because
of specular reflection of incoming wave by the upper part of
the conical shield that directs the wave to the vertex of parabo-
loid (we are grateful to the associate editor for this observation).
These simple geometrical considerations help, in part, explain
the shape of the mentioned areas. The distance from the split
focus to the geometric focus of paraboloid and to its vertex is
15.51X and 0.99A, respectively.

Out of curiosity, we have placed the HE between the
two split foci locations and compared the far-fields of
the TARA-like shield-assisted paraboloidal reflector and
a stand-alone paraboloidal reflector illuminated by such a
feed—see Fig. 11. It can be seen that a paraboloid without the
shield does not produce any reasonable main beam with the
feed at that point.

In contrast, the shield-assisted paraboloid fed by a HE placed
between the split parasitic foci radiates a sort of conical beam
with a minimum in the direction of the z-axis.

C. Elementary Optimization

An interesting question is whether the TARA antenna char-
acteristics can be preserved or improved if the width of the con-
ical shield is reduced, possibly for a different value of its incli-
nation angle #y. Such optimization may seem elementary (only
two control parameters are involved) however, to be successful
with the 80-wavelength reflector, it needs an accurate and eco-
nomic computational instrument. The IE-Nystrom algorithm of
[14] combined with the approach presented in Section IV meets
this requirement.
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Fig. 11. The total far-zone radiation patterns of the shielded paraboloidal and
stand-alone paraboloidal reflector illuminated by a conventional HE placed in
the parasitic focus location in the H-plane (top) and in the E-plane (bottom).
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Fig. 12. The total far-zone radiation patterns of the in-focus CHE fed TARA-
like reflector in the H-plane (top) and in the E-plane (bottom) for v = 5°,
L=15mandyp, = 30°, L =2 m.

As an outcome of this optimization, in Fig. 12, we compare
the far-field patterns of a shield-assisted reflector with 8y = 59
and [ = 1.5 m and of the real TARA (f = 30°,1 = 2 m).

Comparison shows that the shield-assisted paraboloidal re-
flector with 8y = 5° and [ = 1.5 msatisfies the major antenna
design requirement on the sidelobes referred to above. It should
be noted that the directivity of such a modified reflector is even
larger than for the actual TARA.

VI. CONCLUSIONS

We have introduced important improvements to the algorithm
initially presented in [12]-[14] enabling more efficient anal-
ysis of rotationally symmetric reflector antennas of quasi-op-
tical size. For this purpose we have derived a new series form for
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the MGF. The terms of the series tend to zero with exponential
rate and calculation time does not depend on the electrical size
of reflector. Using such series we have been able to investigate
an electrically large TARA-like shield-assisted paraboloidal re-
flector antenna on a PC.

To model the TARA feed we have used a CHE with an op-
timal aperture-size parameter. For a CHE located on the axis
one needs to solve only one set of a 1-D hypersingular and a
singular IE. This system corresponds to the first azimuthal har-
monic of the current density components.

We have considered the far-field of the TARA-like antenna
in the transmission case and found that the calculation time is
hundreds times smaller than with the MLFMA-MM algorithm
of [2], [3] although this advantage can reduce to 10 with newer
versions [29]. In the on-axis reception case, an interesting phys-
ical effect has been observed that escapes geometrical-optics de-
scriptions: in addition to the main focal spot (area of field con-
centration), there is another parasitic “focus” near the parabo-
loid vertex, split to two spots in the H-plane.

Thanks to the high efficiency of computations, elemen-
tary numerical optimization of the TARA-like parabo-
loid-plus-shield antenna has been performed. We have shown
that the directivity can be improved, and the width of the
conical shield can be reduced by a half meter, by changing the
shield inclination from 30° to 5°.

The use of the rigorous theory of integral equations with a
Nystrom-type discretization offers many opportunities, not only
in reflector antenna design. For instance, one can find numerous
applications in the electromagnetic diffraction and eigenvalue
problems for dielectric bodies. This can be a direction of further
research.

APPENDIX

In Section IV we have considered how to compute MGF (11),
(12) in the case of the integration variable £ not equal to the
observation point 7. Here we show what happens if 7 — ¢ in IE
kernels, which contain MGF.

All kernels given by (33)—(36) of [14] in IE (28) of [14] are
smooth (belong to the Holder space C'+, o < 1) and of course
have finite limits, K(r,¢) — K(t) if 7 — ¢. The limits of IE
kernels can be derived analytically using asymptotic behavior of
MGF Sy as it had been described in [6]. Because of complexity
of this derivation we do not represent all these limits here. For a
rough calculation it is possible to obtain this values numerically
as K(t) = K(t + ¢,t), where £ > 0 is a “small” number, for
example ¢ = 106,

As an example, now we consider the limit for the kernel
K (r.t) = p[(M?/p)Sar — k2 poST;] - c4(7) In |7 — t] (see
(36) in [14]). This is the simplest of all kernels and therefore
it does not need huge space for derivation. At first consider the
asymptotic behavior of MGF

27 27
Sar(7,t) :/(e*'i“ cos(M) — 1) ~L*1dw+/L*1dz/).
0

(AT)
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Denote the smooth first term at the right-hand part of (A1) as

27
Qui(r,t) = / (e7*E cos(Mp) — 1) L™ dyp. (A2)
0

It is possible to show that

27

/ Ly = 3K (v) (A3)
J L ¥

0

where K (v) is the complete elliptic integral of the first kind,

V(o +p0)2 + (z — 20)? (A4)
Z—pr“ (AS5)

v =r*(r,l) =
v =v(r,t) =
In [27] and [28] the following asymptotic behavior is given:
4 1 9 4
), 2o [ 2]+ (5) - i [ ] 1)
+O[(1—V2)2111(1—1/2)]. (A6)

Using (A3) and (A6) we see that the singular second term in
(A1) behaves as

2w

/du; 2 p 8p
— = ——hl|7’—t|—|——1117
L t—T s] W12

J P f V't z

+O[(t—7)ln

I, (A7)

where a prime means differentiation with respect to variable .
Therefore, from (A7) and (A2) we obtain the following result:

. 2 2 &p
71'1£1>1t |:Sj\[ + ;ln |T — t|:| = QA{(t., t) + ;hl W
(A8)
From (A2) we can also find that
7 exp —zkp( )2 sin (2 )) cos(M) —
Qu(t,t) =2 / di.
/ kp(t)2 sin (;)
(A9)

Finally, using (A7) we obtain the expression that we have
been looking for

KM( )_p(t)‘d 2 Sp(t) [MQ

9 2
-I—M Ot t) — i /2)(t [Qar—1(t. 1) +QM+1(t7t)]}
(A10).

- kzp(t)}

e

p(t)

Similar treatment of lim K M(r,t) takes several pages and
T—
therefore we do not show this bulky derivation in the paper.
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