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Abstract  
Comprehensive microcavity laser models should account for several physical mechanisms, e.g. carrier 
transport, heating and optical confinement, coupled by non-linear effects. Nevertheless, considerable 
useful information can still be obtained if all non-electromagnetic effects are neglected, often within 
an additional effective-index reduction to an equivalent 2D problem, and the optical modes viewed as 
solutions of Maxwell’s equations. Integral equation (IE) formulations have many advantages over 
numerical techniques such as FDTD for the study of such microcavity laser problems. The most 
notable advantages of an IE approach are computational efficiency, the correct description of cavity 
boundaries without stair-step errors, and the direct solution of an eigenvalue problem rather than the 
spectral analysis of a transient signal.  Boundary IE (BIE) formulations are more economic that 
volume IE (VIE) ones, because of their lower dimensionality, but they are only applicable to the 
constant cavity refractive index case. The Muller BIE, being free of ‘defect’ frequencies and having 
smooth or integrable kernels, provides a reliable tool for the modal analysis of microcavities. Whilst 
such an approach can readily identify complex-valued natural frequencies and Q-factors, the lasing 
condition is not addressed directly. We have thus suggested using a Muller BIE approach to solve a 
lasing eigenvalue problem (LEP), i.e. a linear eigenvalue solution in the form of two real-valued 
numbers (lasing wavelength and threshold information) when macroscopic gain is introduced into the 
cavity material within an active region. Such an approach yields clear insight into the lasing thresholds 
of individual cavities with uniform and non-uniform gain, cavities coupled as photonic molecules and 
cavities equipped with one or more quantum dots.   
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A. Passive Cavities: Mathematical Study of 3-D Complex-Frequency Eigenvalue Problems 
 
 When studying time-harmonic electromagnetic fields in the presence of a dielectric microcavity, 
usually one implies that the cavity has finite volume V bounded with a smooth surface S, and that the 
host medium is free space. If, for simplicity, the cavity material is assumed uniform, i.e. it assumed 
that the refractive index is a constant, say α inside S, and 1 outside, then the natural, or source-free, 
electromagnetic field problem leads to the frequency eigenvalue problem [1]. It implies that one looks 
for the natural frequencies (for convenience, normalized by the light velocity c, i.e. the natural 
wavenumbers k) generating non-zero fields { , } ikctE H e−

r r
. These fields solve, off the cavity surface S, the 

set of homogeneous time-harmonic Maxwell equations with transmission conditions: that the 
tangential field components must be continuous across S. Further, the electromagnetic energy must be 
locally finite (i.e. integrable) to prevent source-like field singularities, and, eventually, one must also 
include a certain condition at infinity ( R →∞ ). It plays an important role and in 3-D has the form of 
the Silver–Muller radiation condition [1], which provides for the outgoing spherical-wave behaviour 
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and, in addition, eliminates non-transverse components of E
r

 and H
r

 at infinity. The set of conditions 
mentioned is “inherited” from the wave-scattering problems where they guarantee the uniqueness of 
the solution for all real values of k. Thus one arrives at an eigenvalue boundary-value problem (BVP).  
 

Several important general properties of the eigenfrequencies can be found even before solving the 
formulated BVP. Thus, provided that the cavity material is passive, whatever is the open cavity 
geometry, real-valued eigenfrequencies cannot exist; while complex eigenvalues of k can be located 
only in the lower half-plane of the k-plane ( Im 0k < ), for the selected time dependence. This 
corresponds to a damping with time due to radiation losses; for the same reason the field functions 
{ , }E H
r r

diverge at infinity as Im( / )kRO e R− . In this sense, the eigenfrequencies of a passive open cavity 
are generalized eigenvalues generating generalized eigenfunctions. They come in pairs: if k is an  
eigenvalue, then so is –k*; this is a consequence of the time invariance in harmonic problems.  

Further, the eignevalue BVP can be equivalently reduced to a set of four coupled boundary integral 
equations (IEs) of the second kind with smooth or integrable kernels analytic on the complex k–plane 
(so-called Muller BIEs) [1, 2]. Therefore, the Fredholm theorems generalized for operators hold true 
[3, 4]. They tell us that the eigenfrequencies form a discrete set in any bounded domain on the k–
plane; they have no finite accumulation points; they can appear or disappear only at infinity; and each 
of them has finite multiplicity. Therefore, one can number them with an index, say s. Although this 
property seems to be almost evident from the physical point of view, it has important practical 
consequence in numerical modelling: there is no danger that an algorithm looking for sk  may hit a line 
or lacuna filled with eigenfrequencies. More important is that each  sk  is a piecewise-continuous or 
piecewise-analytic function of geometry and refractive index, and these properties can be lost only if 
one or more eigenvalues coalesce. The eigenfunction { , } { ( ), ( )}s s s sE H E k H k=

r r r r
gives the optical field 

function, and the entity of eigenfrequency and eigenfunction is considered as a mode. The quality 
factors of modes are defined as | Re / 2 Im | 0s s sQ k k= > . As mentioned, the eigenfrequencies may 
coincide, this is called modal degeneracy. If the degeneracy is caused by a symmetry of the cavity 
(geometrical degeneracy) then the modal fields are orthogonal to each other as belonging to different 
symmetry classes; if it is caused by the coalescence of the eigenfrequencies of the same symmetry 
class when varying some parameter (algebraic degeneracy), then, as well as the eigenfunction, a finite 
chain of associated functions appear; all together such functions are called root functions.  

 
Unfortunately, the complex-valued nature of eigenfrequencies, albeit necessary for the physical 

adequacy, makes them inapplicable as the solution building blocks in the scattering BVP when the 
frequency of the incident wave, k, is real-valued. Indeed, the set of generalized eigenmodes of an open 
cavity does not possess completeness, in a mathematical sense. Besides, orthogonality between the 
generalized eigenfunctions of the same class can be established only at the expense of introducing a 
super-exponentially decaying weight to compensate for their spatial divergence [5]. All this prevents 
one from using such modes as a discrete-mode functional basis in the scattering problems. 
 
B. Thin Cavity Case: Generalized Boundary Conditions and Dimensionality Reduction to 2-D 
 

If the cavity thickness is a fraction of both its diameter and the wavelength, one can simplify the 
BVP analysis by neglecting the electromagnetic field inside the cavity and treating it as a zero-
thickness one. Mathematically, this approach is called homogenisation of the BVP. It leads to the 
modification of the boundary conditions across the cavity plane – the new form of such (generalized) 
conditions involves the jumps of tangential components of both E

r
 and H

r
 (i.e., equivalent magnetic 

and electric currents) with coefficients absorbing the actual thickness and material constants of the thin 
cavity. The BVP remains a 3-D one, however the complicated integration domain (cavity’s surface S) 
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in the associated boundary IE shrinks to a simpler 2-D domain in the plane of the cavity. Furthermore, 
in the case of thin cavity a total reduction of dimensionality of a microcavity BVP, from 3-D to 2-D, is 
tempting. At its core one finds the assumption that the field dependences on the normal-to-cavity-face 
( )z  and in-plane ( , )r ϕ  coordinates are separable (see [6]). In fact, this is incorrect because neither the 
boundary conditions on the 3-D disk surface S, nor the radiation condition at R→∞ are separable. 
However, this leads to decoupled differential equations for the functions of z and ( , )r ϕ . The first of 
them brings a set of dispersion equations for the “effective index” as a normalized wavenumber of the 
natural guided wave on an infinite dielectric slab of the same thickness as disk. For the in-plane fields, 

( , ) orz zU x y E H= , one obtains independent BVPs for the 2-D Helmholtz equation, with the squared 
effective refractive index in the coefficient instead of the bulk refractive index as in the 3-D BVP. The 
transmission-type boundary conditions now depend on the polarization; 2-D power finiteness and 
radiation conditions should be added. Note also that the effective index is a function of frequency and 
has a discrete set of values corresponding to different slab waves [6]. Generally speaking, a 3-D 
problem is not equivalent mathematically to the “sum” of 1-D and 2-D problems. Nevertheless, it is 
well known that the results obtained with the effective-index method are often more accurate than 
might be expected.  
 

In 2-D, BVP can be also equivalently reduced to two coupled contour-type Muller’s IEs with the 
same conclusions about the discreteness, finite multiplicity, and continuous dependence of 
eigenfrequencies on parameters. However, they are now located not on the complex k-plane but on the 
Riemann surface of the multi-valued function Lnk . This is because in 2-D the Green’s function is the 
Hankel function, (1)

0 ( | ' |)H k r r− r , known to have a logarithmic branching point if 0k = .  

C. Merits of the Integral-Equation Based Computational Methods 
 

Unfortunately, popular time-domain numerical codes, typified by the finite difference time domain  
(FDTD) method, are not able to solve eigenvalue problems directly – they always need a time-varying 
source placed inside a cavity; evaluation of the natural frequencies and Q-factors is done via spectral 
analysis of a transient signal [7,8]. Therefore the results obtained can depend on the location of the 
source and observation points and other not physically relevant factors. On the other hand, billiards 
theory [9] neglects the field leakage to the host space and therefore fails to quantify the Q-factors. An 
attempt to improve this geometrical approach by using Fresnel coefficients has a limited effect as it is 
based on the assumption of a locally flat boundary illuminated by a locally plane wave, and realistic 
microcavities are far from this situation. These difficulties are absent if one reduces the BVP to 
volume (VIE) or boundary (BIE) integral equations. VIEs have the advantage of being applicable even 
to cavities with non-uniform refractive indices. However, all 3-D and H-polarization 2-D VIEs are 
strongly singular, a fact which makes their application questionable because of the non-convergence of 
discrete schemes. This drawback was overcome in [10], where a regularisation procedure for 2-D 
VIEs was developed. In contrast, the E-polarised case leads to the Fredholm second kind 2-D VIEs 
and convergent algorithms. For example, such a technique was developed in [11] to model a microdisk 
filter in a slab waveguide. This approach has clear advantages over such popular counterparts as the 
physically transparent, yet rough, coupled-mode approximations [12] and time-domain numerical 
codes. The same VIEs, if extended into the complex-frequency domain, can be used for the accurate 
calculation of the Q-factors.  

 
BIE formulations are more economic than VIE ones due to lower dimensionality, although they 

work only if the refractive index is constant inside the cavity. BIEs can be easily cast into a form free 
of strong singularities. However, many forms of BIE possess an infinite number of discrete defect 
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frequencies [13] – eigenvalues of the interior electromagnetic problem where the boundary S is 
assumed perfectly electrically conducting and filled with the outer-medium material (e.g., free space). 
In terms of the eigenvalue BVP it means that an infinite number of false real-valued eigenfrequencies 
is present. Such a technique was developed in [14] and applied to the analysis of low-Q modes in 
passive non-circular cavities [14, 15]. Another version of “defective” BIE was applied in [16] to study 
the enhancement of spontaneous emission in a more justified manner – only smaller than wavelength 
cavities were computed, i.e. the frequency remained lower than the first “defect” value. Analytic pre-
conditioning may reduce the negative effect of the false eigenvalues although it does not remove them. 
Such a refined variant of “defective” 2-D BIE analysis has been successfully applied in [17, 18] to 
study the high-Q whispering-gallery (WG) modes in circular and non-circular cavities in layered 
media. 
 

Fortunately, there exists a perfectly reliable tool for the modal analysis of dielectric cavities. This is 
the Muller BIE (in fact, two coupled BIEs) already mentioned which are (i) free of defect frequencies 
and (ii) have smooth or integrable kernels. A Muller BIE can be discretised either with collocations 
[19] or with a Galerkin-type projection to global expansion functions [20]. Both ways possess a 
guaranteed convergence thanks to the Fredholm second kind nature of Muller BIEs. According to [20], 
the size of the resultant matrix is determined by the electrical size of the cavity, normalised peak 
curvature of the boundary, and the desired accuracy (in digits) in almost equal manner. We emphasise 
this because, as a rule, the published works where BIEs are used ignore the last two parameters and 
blindly rely on the “rule-of-a-thumb” of taking 10 mesh points per wavelength. This powerful method 
has been already applied to the accurate 2-D analysis of optical modes in various non-circular passive 
dielectric cavities [20-23], including very high-Q-factor WG modes. The modal analysis of more 
realistic 3-D cavities with Muller BIEs remains a topic for future studies; it will accurately establish 
the domain of validity of the effective index based 2-D approximation. 
 
D. Lasing: Active Region and Threshold Value of Material Gain  
 
The main point, however, is that the lasing phenomenon is not addressed directly through the Q-factor 
– the specific value of the pump or gain that is needed to force a mode to become lasing is not 
included in the formulation. As a practical consequence, the Q-factor theory fails to explain why 
photo-pumping with a hollow beam reduces the threshold power for a microdisk [24] and why in the 
stadium-shape cavity the lasing occurs on the “bow-tie” modes [9] whose Q-factors are several orders 
lower than those of the WG-like modes. Trying to answer these questions, researchers have resorted to 
complicated non-linear descriptions of the lasing [25, 26]. 
 

On realising such a gap in the linear characterisation of lasers, we have modified the formulation of 
the electromagnetic problem by introducing macroscopic gain in the cavity material and extracting not 
only the frequencies but also the thresholds as eigenvalues. Here, material gain, say γ , is the active 
imaginary part of the complex refractive index ν : if the time dependence is assumed as ikcte− , then 

iν α γ= − , 0, >γα . Such a lasing eigenvalue problem (LEP) was suggested in [27]. The gain per unit 
length, the traditional quantity for Fabry-Perot cavities, is γkg = , and, in principle, γ  can be 
expressed via the medium microscopic parameters with the aid of the two-level model [26]. Note that, 
unlike the analysis of the scattering of light by active bodies (see [28]), the search of their LEP 
eigenvalues does not lead to non-physical results. To link the LEP with the more traditional Q-factor 
problem, one can keep in mind that each complex-valued eigenfrequency sk  is a continuous function 
of γ . In fact, in LEP we seek a specific value of sγ γ=  that brings the function Im ( )sk γ  to zero, and 
consider this as the threshold of lasing at which the radiation losses are balanced exactly with the 
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macroscopic gain of active medium. The pair of real numbers, ( , )s sk γ , is therefore the signature of the 
sth lasing mode. Note that, thanks to the real-valued k, modal fields do not diverge at infinity. 

  
Similarly to the complex eigenfrequencies, the basic properties of the lasing eigenvalues can be 

established before their computation: (i) eigenvalues form a discrete set on the plane (k, γ); (ii) all 
0sγ >  and each has finite multiplicity; (iii) sk  and  sγ  depend on geometry and bulk refractive index α 

in a piecewise-continuous or piecewise-analytic manner. 
 

Application of the LEP approach to the circular resonator as a 2-D model of microdisk was 
presented in [27] and led to the accurate quantification of the thresholds of both WG and non-WG 
modes. Quasi-3-D features were further provided to the LEP analysis of a microdisk laser by an 
accurate account for the multiple-value character of the thin-disk effective index and for its dispersion 
[6]. A non-uniform distribution of gain across the disk, due to either shaped pump beam or shaped 
electrodes cannot be accounted for in the passive cavity model but is easily accounted for in LEP. To 
this end, one has to introduce the gain only inside the active region and impose an additional set of 
transmission conditions on its boundary. In [6], such a 2-D LEP analysis was done for microdisks with 
active regions shaped as (i) a circle centred inside the disk and (ii) a ring adjacent to the disk rim; it 
was proven that placing the active region (e.g., an electrode of injection laser [29]) in the cavity centre 
boosts the thresholds of the WG modes by many orders of magnitude. 

 
In contrast, a ring-shape active region may be as narrow as 0.1a and still provide the same value of the 
material gain threshold as in the uniform-gain disk (see Fig. 1-a). Thus the intuitive idea of the 
importance of “spatial matching” between the active region and the modal field pattern is incorporated 
into the LEP automatically. Note that the crossing of the solid and dashed curves in Fig. 1-a takes 
place at the level of the doubling of the threshold, for each mode, relatively to the uniformly active 
disk threshold. This is because here the active region, shaped as either an inner circle or a ring adjacent 
to the cavity rim, overlaps with exactly a half of the modal field power.  
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Figure 1.(a) Threshold values of the whispering-gallery (Hz)m,1 modes in a thin-disk cavity [6] with 
radially non-uniform gain as a function of the gain-to-rim radii ratio; (b) Thresholds versus the rim-to-

rim airgap width normalized to the disk radius, for the lasing supermodes of the π-(Hz)0,1 type in the 
cyclic PMs [32] made of M active microdisks; straight line is the threshold of in the single cavity. 
Bulk refractive index 3.374α = , wavelength 1.55λ = , disk thickness 200d = nm (a) and 100d = nm (b). 
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In [30], a twin-disk photonic-molecule (PM) laser has been studied, based on the reduction of the 
LEP to a Fredholm second kind matrix problem. Here, degenerate WG modes split into four 
orthogonal coupled modes (i.e., supermodes) of different symmetry classes. The most interesting 
result is that, for each of the supermodes, careful tuning of the distance between the disks may provide 
a threshold, which is lower than for a single cavity. Similar effect takes place for a two-disk PM with 
one active and another passive cavity and for PMs arranged as cyclic arrays of identical active 
microdisks  [31]. For the latter PMs, a remarkable symmetry-assisted reduction of thresholds has been 
found for the supermodes built of the WG modes in individual cavities, if the distance between the 
adjacent disks is properly tuned. Even more interesting is the effect of lowering the thresholds of 
lasing in a cyclic PM for the π-type supermodes built on the lowest possible elementary modes, such 
as monopole mode (Hz)01 and dipole modes (Hz)01, which never show a WG-type behaviour [32]. This 
happens provided that the elementary side-cavity disks are brought together, there is an even number 
of them, and this number is large (see Fig. 1-b). 
 

It is worthy of note that the finite spectral width of the photoluminescence of the active region can 
be taken into account in the LEP in the same manner as the dispersion of the effective index (see [6]). 
It is clear that, in such a formulation, only those lasing modes whose frequencies spectrally match the 
photoluminescence band will keep low thresholds. 
 
Conclusions  
 
Linear analysis of the natural (i.e., source-free) electromagnetic fields in dielectric microcavities leads 
to the study of eigensolutions to Maxwellian BVPs. A reliable tool for their solution must somehow 
tackle arbitrarily curved boundaries, use rigorous boundary conditions, and accurately account for the 
open host space. All these criteria are fully satisfied when using the technique based on the Muller 
BIEs. To extend this analysis to the lasing in semiconductor cavities, though still remain within a 
linear formulation, one has to switch from a passive cavity to the cavity with gain in the active region, 
i.e., to study a LEP. In this case, the search for the modal Q-factors should be replaced with search for 
the threshold values of material gain, for each of the optical modes. The LEP formulation takes into 
account, in an averaged manner via the macroscopic concept of an "active" imaginary part of 
refractive index, the presence of carriers in semiconductor material. Thus, it can be called a "warm-
cavity" model of laser – an intermediate one between “cold” model, or passive cavity and “hot” model, 
or nonlinear model with the account of microscopic properties of the carriers. 
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