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Introduction 
Semiconductor microdisk lasers with whispering-gallery (WG) modes attract much attention since the 

early 1990’s, as sources of infrared and optical radiation having ultra-low thresholds [l-31. Such lasers can be 
optically pumped or injection ones. Several authors have worked on building theoretical description of the 
optical modes of microdisks. This was done either with rough analytical assumptions [4,5] or through FDTD 
simulations [6 ] .  In these papers, 3-D problem for a finite thickness disk was approximately reduced to the 2-D 
one based on the effective index method [7-91 developed earlier for layered media, however dependence of the 
effective index on frequency was neglected. Our paper presents a study of 2-D lasing eigenvalue problem for a 
microdisk, based on the complete Maxwellian formulation with transmission condition at the disk boundary and 
radiation condition at infinity. Unlike previous papers, we take account of the presence of many guided waves 
able to propagate in the disk and of the frequency dispersion of each associated effective index. 

Effective index approach 
Suppose that disk of the thickness d and radius a is nonmagnetic, has real-valued refraction index a, 

and is placed in vacuum. The electromagnetic field is assumed to have the time dependence as e-‘”‘, where w is 
the angular frequency. Then, free-space wavenumber is k = w / c  = 2n /A  , where c is the free-space light 
velocity. 

So-called effective-index approach starts from the assumption that the dependences of the field { E ,  H }  
on the vertical coordinate z and in-plane coordinates r = ( r , p )  can be separated everywhere, e.g., 
E,(R) = VE(z)UE(r,p) ,  HZ(R) = VH (z)UH ( r , p )  . In fact, this is incorrect because neither boundary conditions 
on disk surface, nor radiation condition at R -+ M is separable. However, such an assumption enables one to 
write independent differential equations for the functions of z and r . They are, respectively, 

where a turns 1 off the interval I z (< d / 2 , and effective refraction index 
1 outside. The transmission-type boundary conditions for J“,E (z)  depend on polarization, namely 

= inside cavity ( r  < a) and 
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Figure 1. Dispersion characteristics of the guided modes of 
infinite dielectric slab made of GaAs with the bulk refraction 

index ~ 3 . 3 7 4 .  

where p” = a-‘ and P E  = 1. To complete the 
formulation in the open domain, one needs a 
condition at infinity. Unfortunately, there is no 
“continuous” way to derive 1 -D condition 
( z  + ho) from the 3-D condition for {E, H }  . In 
order to reproduce the outgoing wave propagation 
off the disk plane, one has to request that 

The first of equations (l), together with (2) and (3), 
forms a familiar 1-D eigenvalue problem for the 
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parameter a$ or a$, which is a normalized propagation constant of a TE (or H ,  ) or TM (or E, ) type guided 
wave of infinite dielectric slab. They are reduced to the transcendental equations 

tanpkd =PE”@-‘,  cotpkd = -p“”gp-’ (4) 

For the each type of waves, there exists finite number Q”.“ 2 1 of real-valued solutions, ae;& : 1 < a;:) < a ,  
q = 0, ...,eHvE + l  , The largest of them correspond to the TMo and TEo waves, respectively. The even (odd) 
value of the wave index indicates to the symmetry (anti-symmetry) of the wave field E, or H, with respect to the 
middle plane of the slab. Plots in Fig.1 demonstrate the dependences of the effective indices on the frequency 
normalized by the disk radius, i.e., on ku = kd(d I U)-’ . 

Lasing eigenvalue problem (LEP) and numerical results 
To find the in-plane field patterns of the lasing modes in a disk cavity, we shall suppose that U is either 

E, or H, field component, depending on polarization, and introduce material gain y > 0 in the cavity. According 

to (I), off the disk contour this function must satisfy the Helmholtz equation, [A + k 2 v 2 ( r , p ) ] U ( r , p )  = 0, where 
step-wise function v ( r , p )  is assumed 1 outside the cavity and a complex value inside: v = aef - i y  . The field 

I-) 
Figure 2. Algorithm chart. 

must also satisfy the transmission conditions across the boundary of 
resonator and the Sommerfeld radiation condition at infinity that 
selects outgoing field solutions. Following [lo], we look for the 
eigenvalues as discrete pairs of real-valued parameters, (K, y )  , that 
yield normalized frequencies of lasing, e k u ,  and the associated 
threshold material gains. 

By using the separation of variables, this problem is reduced to 
the set of independent transcendental equations: 

J,(KV)H~’)(K)-PPVJL(KV)H~)(K) = 0,  (5 )  

where the fknctions involved are the cylindrical functions. Here, B 
equals v-* in the case of H, polarization or 1 in the case of E, 
polarization. Note that a,,q,(~) can be associated with any guided 
wave of the relevant slab. Therefore each pair should be denoted as 
( K , ” ~  , y,,,,,) , where azimuth and radial indices are 
rn = 0,1,2, ... ,n = 1,2,... , respectively, and effective refraction index 
brings the third number, q=O, 1,2,. . . (see Fig. 1). Further we use two- 
parametric iterative Newton method to solve (5 )  numerically. Unlike 
[lo], we combine it here with accurate account of the dispersion of 
corresponding effective index. Fig. 2 shows the chart of the adaptive 
algorithm used to calculate the eigenpairs of LEP. 

The plane (K, y )  happens to be inhabited by the eigenvalues in 
non-uniform manner. First of all, one can clearly see a hyperbola, 
y = const I K , “saturated” with modes of all the m-th families. These 
modes have very high thresholds characterized with dimensionless 
materia1 gain y > 0.1. Above that curve, there are no lasing modes. 
In contrast, in each family with m > a  the modes, which have 

K < m but still K > m I a , keep the same distance in K however display drastically smaller values of y . These 
values are getting even smaller for larger m. Below the mentioned hyperbola the modes (i.e., the eigenvalues) 
form inclined layers, each layer corresponding to a certain value of the radial index n. Thus, not automatically all 
the modes in a circular cavity show “whispering” property although all show the “gallery” property, i.e., 
periodicity in K . Only the modes having the frequencies within the strip m l a  < K < m are “whispering”, i.e., 
have exponentially low thresholds. This is because only these modes experience quasi-total internal reflection 
when propagating along the rim of the cavity. The lowest-threshold layer is formed by the WG modes having a 
single variation in radius (n = 1). Below that layer, in the domain K < m / a , no eigenvalues are found in the m- 
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th family. Still besides, Fig. 3 demonstrates the effect of the effective index dispersion. For the same disk, the 
E, -polarized modes of the same index q have smaller effective index, than the Hz -polarized ones, in wide band 
of frequencies. Therefore the E, -modes have smaller chances to go lasing unless m and hence K is not large 
enough. Similar data were computed for the other effective indices of the higher-order slab waves. They show 
considerable blueshifts of the lasing frequencies of the corresponding disk modes and very high thresholds - due 
to the smaller effective indices (see Fig. 1). 
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Figure. 3. Lasing spectra and threshold gains for the cold-model modes of the families (EJm0 
and (HJm0 in a GaAs/InAs disk, a = 3.374 and d l a  = 0.1 . 

Conclusions 
We have demonstrated that semiconductor microcavity laser can be efficiently analyzed with 

specialized “cold model with gain” problem, i.e. LEP. Even analysis of approximate, effective-index-based, 2-D 
LEPs for a circular microdisk - if done accurately - brings valuable information. For each polarization, in the 
plane ( K , Y )  there exist “no-lasing’’ domains. As expected, the thresholds of the ( H z ) m n O  modes are lower than 

of their counterparts, thanks to the greater value of the effective index a;, than a;), for the same disk 

thickness and radius. However, in general, in the larger and thicker disks these modes are able to compete for the 
lasing, and the nearest higher-order, in q, modes (H,)mnl  are also to be considered. 
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