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Abstract: We consider the lasing characteristics of the natural 
modes in a limacon active microcavity. The modes are the solutions 
to the two-dimensional (2-D) linear eigenproblem for the Maxwell 
equations with exact boundary conditions and radiation condition at 
infinity. This problem is reduced equivalently to the set of Muller’s 
integral equations of the Fredholm second kind and discretized 
using the exponentially convergent quadrature formulas. The 
numerical studies of lasing thresholds and modal field patterns of 
the whispering-gallery modes are presented. They demonstrate that 
the directionality of emission from a cavity deformed from the 
circle can be enhanced in several times using relatively small 
deformations. However this is achieved at the expense of higher 
threshold values. 
 

I. INTRODUCTION 
 

Circular microdisk lasers work on the so-called whispering-
gallery (WG) modes whose fields experience almost total 
internal reflection along the rim of the disk. This leads to ultra-
low material thresholds of lasing for these modes when the 
disks are pumped. However the circular shape of the cavity 
also entails a low directionality of light emission. Indeed, any 
WG mode with the azimuth index m has 2m identical beams in 
the disk plane emitting the light to infinity. Directionality can 
be conveniently quantified with the aid of directivity as a ratio 
of the power emitted into the main beam direction to the total 
power averaged over all directions. Then any mode of a 
circular cavity with m > 0 has directivity equal to 2.  

Thus, it is evident that low threshold and high directivity are, 
generally speaking, two contradictory demands. Any 
improvement of the directionality needs a distortion of the 
cavity shape from the circle that inevitably results in a 
threshold higher than for the circle. Only a small deformation 
of circular symmetry may enable one to make the threshold 
growth of quasi-WG modes tolerable.  

Here, non-circular cavities with only one symmetry line can 
be considered as the best candidates. This is because, from the 
one hand, they are able to provide a well-shaped main beam of 
emission and this beam is destined to radiate along the 
symmetry line. Thus, its angle of emission is fixed due to the 
symmetry, unlike a spiral cavity mode where it may take an 
arbitrary and a priori unknown value. A limacon cavity is an 
example of a slightly deformed circular shape with one 
symmetry line. Recently, it has been studied theoretically [1-3] 

and experimentally [2-4] and the improvement of directionality 
has been confirmed. Still there is no information available on 
the change of the lasing thresholds in a limacon-deformed 
microcavity laser. Therefore in this paper we report on the 
preliminary results of the “warm-cavity” modelling of the 
lasing modes characteristics in a uniformly active 2-D limacon 
laser model. 

 
II. EIGENVALUE PROBLEM FOR ACTIVE MICROCAVITIES 

 
Denote the interior domain of a 2-D model of an active 

dielectric (non-magnetic) microcavity as iD , its closed contour 
as Γ , and the outer domain as eD . Consider a function 

( , )U x y , which is either the zE  or the zH  field component. 
When simulating a microlaser, we are interested in the real-
valued pairs of numbers ( , )k γ  generating non-zero functions 
U that solve, off Γ , the Helmholtz equation 2 2( ) 0k Uν∆ + =  
with a piecewise-constant refractive index ν  equal to 

i i iν α γ= −  ( 0)γ >  in iD , and e eν α=  in eD . Here, the 
following two-side boundary conditions are imposed on Γ : 

e iU U=  and / /e i
e iU n U nη η∂ ∂ = ∂ ∂ , where the superscripts 

“ ,i e “ refer to the corresponding domains, , 1i eη =  (E-

polarisation) or 2
, ,1/i e i eη ν=  (H-polarisation), and n  is the 

outward normal vector to Γ . Furthermore, the time-averaged 
electromagnetic energy must be locally integrable to prevent 
source-like field singularities, and the Sommerfeld radiation 
condition must be satisfied at infinity. Note that in the 2-D 
models of thin-cavity lasers the refractive index is understood 
as the effective refractive index, which is somewhat smaller 
than the bulk refractive index of the cavity material [5]. The 
formulated above problem is the Lasing Eigenvalue Problem 
(LEP), and frequencies k and threshold gains γ are the LEP 
eigenpairs. The essentials and the general theory of LEP 
approach can be found in [6].  

For the contour Γ representation, we use the following 
analytic 2π-periodic function, where [0, 2 ]t π∈ : 
 

 

( ) (1 cos )cos , ( ) (1 cos )sin .x t a t t y t a t tδ δ= + = +

 

(1) 
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 The curve (1) is called a limacon. Here, δ  is the normalized 
contour shape parameter, so that if 0δ =  then (1) turns to a 
circle. If, however, δ  take large values, then (1) obtains a 
characteristic snail-like shape (“limacon” is snail in French). 
Note that the values of 0.5δ ≤  provide convex contours. For 
the larger values of δ < 1 we have a contour with a dimple, and 
for δ > 1  we obtain a contour with a self crossing. 

 
III. MULLER’S INTEGRAL EQUATIONS 

 
Introduce the Green’s functions (1)

0( ) ( / 4) ( )j jG R i H k Rν=  of 
the homogeneous media, where ,j i e= , | |R r r′= −  is the 
distance between the points r  and r′ , and (1)

0 ( )H ⋅  is the 
Hankel function. After applying the second Green’s formula to 
the functions ( , )jG r r ′  and jU , using boundary conditions, 
and taking into account the properties of single-layer and 
double layer potentials, we obtain two integral equations as 

 

 
( ) ( ) ( , ) ( ) ( , ) 0r r A r r dl r B r r dlϕ ϕ ψ

Γ Γ

′ ′ ′ ′ ′ ′+ − =∫ ∫ ,  

 
( ) ( ) ( , ) ( ) ( , ) 0

2
i e

e

r r C r r dl r D r r dlη η ψ ϕ ψ
η Γ Γ

+ ′ ′ ′ ′ ′ ′+ − =∫ ∫ , (2) 

 

where dl′  is the element of the arc on Γ , ( ) ( )ir U rϕ =  and 
( ) ( ) / ,ir U r n rψ = ∂ ∂ ∈ Γ .  
Here, the kernel functions are 
 

 ( , ) ( , ) / ( , ) /i eA r r G r r n G r r n′ ′ ′ ′ ′= ∂ ∂ − ∂ ∂ , 

 ( , ) ( , ) / ( , )i i e eB r r G r r G r rη η′ ′ ′= −  (3) 

 
2 2( , ) ( , ) / ( , ) /i eC r r G r r n n G r r n n′ ′ ′ ′ ′= ∂ ∂ ∂ − ∂ ∂ ∂ , 

 ( , ) ( , ) / ( / ) ( , ) /i i e eD r r G r r n G r r nη η′ ′ ′= ∂ ∂ − ∂ ∂  (4) 
 

Note that the kernel functions ( , )A t τ  and ( , )D t τ  are 
continuous, and the kernel functions ( , )B t τ  and ( , )C t τ  have 
logarithmic singularities. 

 
IV. DISCRETISATION OF INTEGRAL EQUATIONS 

 
One of the most efficient discretisation techniques is the 

method of quadratures, also known as the Nystrom method [7]-
[10]. This latter method is based on the replacement of the 
integrals with approximate sums using the appropriate 
quadrature formulas. As some of the kernel functions have 
logarithmic singularities, it is convenient to represent all of the 
kernels in (3) and (4) in such a way that these singularities are 
extracted [8], [9]. Then the integrals are approximated by two 
different quadrature rules for the regular and singular parts 
with the same equidistant set of points. Namely, we use a 
trigonometric quadrature rule for the parts with logarithmic 
singularities and a trapezoidal rule for the regular parts [10]. 
By evaluating the integrals from (2) with the aid of the 
quadrature rules, we obtain a determinantal equation for the 

eigenvalues. A secant-type iterative method [1] is further used 
to find the eigenvalues numerically as roots of this equation.  
 

IV. NUMERICAL RESULTS 
 

In this paper we consider the convex limacon contour as a 
continuous deformation of the circle, and therefore denote the 
modes of the deformed cavity using the notations of their 
limiting forms in the circle, with a prefix “quasi”. Note also 
that the deformation from the circular symmetry leads to the 
removal of the double mode degeneracy, for all modes with 
azimuth indices m > 0. This is quite similar to our previous 
study of the modes in a spiral cavity laser [10] and a more 
recent simulation of a kite-shaped laser [11]. As far as limacon 
cavity has one symmetry line, the modes break up into two 
classes according to the symmetry or the anti-symmetry 
properties of modal fields. Notations “even” for the former and 
“odd” for the latter modes will reflect this feature.  

Near-field patterns of two modes of the doublet WGH9,1 are 
presented in Fig. 2.  
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Fig. 2. Normalized near- and far-field patterns for the 
doublet of quasi-WGH9,1 lasing modes. Even mode (a), (c): 
ka = 4.6981, γ = 1.4901*10-2, D = 5.8. Odd mode (b), (d): 
ka = 4.6973, γ = 1.4396*10-2, D = 4.94. Limacon 
normalized deformation parameter δ =0.5, α = 2.63, N = 40. 
 
Here, one should be reminded that in the circular microlaser, 

these modes are degenerate and the corresponding LEP 
eigenvalues are 4.97799ka =  for the normalized lasing 
frequency and 57.2896 10γ −= ⋅  for the threshold material gain. 
In the limacon-deformed cavity, the sister modes of the same 
doublet are closely spaced on the plane (ka, γ). For example, 
the differences in the frequencies and thresholds of the modes 
WGH9,1 appear only in the fourth digits (exact values are given 
in the caption to Fig. 2). As one can see, the circle deformation 
with δ =0.5 leads to the growth of the threshold in 2000 times.  
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 Directionality of modal emission is quantified by the 
value of directivity, 
 

 
2

2 2
max

0

2 | ( ) | , | ( ) |D P d
P

ππ ϕ ϕ ϕ= Φ = Φ∫ , (5) 

 
where maxϕ  is the angle of the main beam radiation in the 
halfspace 0 ϕ π≤ ≤ , ( )ϕΦ  is far-field emission pattern, and P 
is, within a constant, the total power radiated by a lasing mode.  

The shapes of the near- and far-field radiation patterns of 
WGH9,1 doublets are shown in Fig. 2 for the maximum value of 
δ  of the studied range, i.e. δ = 0.5. 

As visible, the directivity can increase to more than twice 
larger value than for the unperturbed WG mode in a circle that 
equals 2. Note that the even-type mode of this doublet has a 
higher directivity than the sister mode of the odd type because 
the latter cannot have a single main beam. Instead, it always 
has a zero field emitted along the symmetry axis and thus 
radiates with minimum two identical main beams (Fig. 2 (d)). 

 
VI. CONCLUSIONS 

 
We have presented preliminary results of the LEP-based 

numerical analysis of the lasing modes in the 2-D model of a 
limacon microcavity laser. This shape is attractive as it only 
slightly differs from the circle and has only single symmetry 
line. This combination of features enables one to keep 
relatively low thresholds of the perturbed WG modes and 
simultaneously improve their directivities of the light emission, 
especially for the modes of the even symmetry class. As one 
can see, even small deformations of this sort can lead to 
considerable changes of the emission patterns and provide 
attractively large directivities.  
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