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Microlaser designs based on high-reflectivity whispering-gallery (WG) modes around the edge of 
a thin semiconductor microdisk have been studied since the early 1990’s [l-31. Optical pump is 
normally arranged with a wide external laser beam [1,2], hence the gain over the disk can be 
considered as uniform. The same, although less justified, holds for injection lasers [3]. 
Mathematically, these modes are the source-free solutions of the 3-D Maxwell equations, however if 
the disk thickness is only a fraction of the wavelength the modes can be studied in 2-D formulation. 
Still surprisingly, it appears that accurate study of the circular-cavity lasing modes is absent, as the 
simplified analysis of [2] was based on rough assumptions, and FDTD simulations of [3] did not 
address the modes directly. 

In this paper we study the lasing eigenvalue problem (LEP) for a circular resonator [4]. We look 
for the non-attenuating time-harmonic electromagnetic field -e-ik‘, k=ReEr>O in and out of a dielectric 
circular cylinder of radius U .  We assume that the field does not vary along the z axis and can be 
characterized by a scalar function U. which represents either E, or H, component depending on the 
polarization. Off the boundaries, this function must satisfy the Helmholtz equation 
[A + k z v z ( r , @ ) ] U ( r , ( ) =  0 .  Step-wise function v(r ,d)  is assumed 1 outside the cavity and 

a complex value inside: I -a- iy,  where a > 0 is the refraction index and y > 0 is the material gain. 
The field must satisfy the continuity conditions across the boundary of resonator. In view of the real 
value of the wavenumber k, we impose the Sommerfeld radiation condition at infinity (r ). The 
eigenvalues are considered as pairs of parameters (K, y )  . The first of them is the normalized frequency 
of lasing, F k a ,  while the second is the threshold gain. This formulation is different from the 
“classical” formulation of eigenvalue problem for an open cavity, when the complex-valued frequency 
k is eigenvalue parameter [5],[6]. Then, the long-living natural oscillations with high Q-factors 
(i.e., small Imk<O) are of the main interest; however the condition at infinity should be modified to 
permit the field growing up. In the case of our formulation of LEP, there is no need of such admission 
of non-physical behavior [4]. Besides, the threshold gain directly characterizes a laser operation while 
the Q-factor makes this indirectly. 

For a circular resonator, separation of variables splits eigenvalues into families according to the 
azimuth index n. This reduces LEP to the set of independent equations in terms of the real and 
complex-argument cylindrical functions of integer index, n=0,1,2, . . . 

v ,U=E,  
v-‘,U = H ,  

JL (ka~)H~’(ka)-PH:“’(ka)J,(kav)= 0, where p = 

The theory of complex variables tells that the set of eigenvalues (~*~,y”, , , ) ,n  = 0.1 ,..., m = 1,2 ,... is 
discrete; each of them may have only finite multiplicity; there are no finite accumulation points of 
eigenvalues. All y,, > 0 [4]. Further we use 2-D Newton’s method to obtain the eigenvalues 
numerically. In computations, we assume that the refraction index is a = 3.53 that corresponds to 
GaAs. 
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ka, frequency of lasing ka, frequency of lasing 

Fig. 1. The eigenvaluepairs for a GaAs circular cavify. 

Fig. 1 shows the eigenvalue pairs in the plane (K,)') within the strip0 < IC = ka < 40. Each n-th 
family of modes displays two different types of behavior depending on the lasing frequency. 
If n l a  < ka < n ,  then the modes are WG ones and have exponentially small thresholds. This is 
explained by the quasi-total-reflection mechanism of the WG mode field forming. It is seen that the 
higher the azimuth index n of the lasing mode, the smaller the threshold gain. The smallest threshold 
in each family is observed for the WG., mode, whose E-field has a single maximum inside or near the 
cavity. The type of modal behavior changes if ka approaches n .  Much larger values ofynm are observed 
if ka> n,  therefore we call corresponding modes as non-WG ones; in this range, thresholds are inverse 
proportional to the lasing frequencies. Interestingly, it appears that for very small cavities, namely 
if ka < n / a  , no lasing modes of the n-th family can be found. 

Each. eigenvalue continuously depends on refraction indexa . As one can see in Fig. 2, 
the threshold 

Fig.2. Dependences of the characteristics ofthe WGE,, and WGH., modes on the refraction index (I 
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By using the asymptotic expressions for cylindrical functions, we have built some analytical 
formulas showing clearly the mentioned above features of the non-WG and WG lasing modes, 
respectively: 

[ K " ~  = ~ ( p  + n + OS)/ 2 a  IK, = n(p + n + O.5)/2a 

1 a-1 , K > n  and 2n , n / a c r < n  y, = ---In- 
2 ~ " ~  a+l 

where p=2j  for the E-polarization orp=2j+l for the H-polarization,j is integer. 
The modal field patterns of the circular microcavity are given by the following functions: 

Iff. 0) ( K . , P ) C O S n ~ , p = r / U > 1 , K , ,  =k,a  

Fig. 3 shows near-field intensities of the non-WG and nearly WG modes of the both polarizations. 
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Fig. 3. Near E-fieldpatlerns (a) E,,,, ka=0.66. y=0.3. (b) E?,,. ka=1.04. y=7.93*10'. 
( c )Es , I .  ka=2.12, y=7.7*104, (d) E,.,, ka=2.79. y=2.67*10s, (e)Hl,,,h=1.13, y=0.27. 
(0 HI,,, ka=O.66, ~ 0 . 3 1 ,  (g) H s . ~ ,  ka=1.78, y=3.89*103, (1) H,,,, ka=2.46, y=1.46*104. 

a b C rl 

Fig.4. Near E-fieldpottems of thefamilies n=IO.  (a) WGEIO.,, ka=3.76. y=1.46*1U7, (a) WGE10,2, h=4.86. 

y=8.4*10-', ( e )  WGH,o.:. k ~ 4 . 5 2 ,  y=3.6*10', (9) WGHIO,J, ka=5.5, y=4.15*104, ( i )  WGHl0,,, ka=6.45, 
y=2.13*103, 

y=8.19*10", (c) WGE,O,J. ka=5.86, y1.22*104, (d) WGE,o,d. ka=6.82, y=8.15*104, (r) WGH/o,l, kn=3.44, 
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Fig. 4 shows the WG modal field patterns for the mode family n=10. As one can see, the modes 
with the larger thresholds have the fields demonstrating additional maxima along the radius. 
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Fig.5. The cavity stability against the mode switching. 

The cavity stability against mode switching is determined by the relative threshold difference 
s, ~= (y., - yn.,,,.)/ yn, among the nearest modes. Fig. 5 shows stabilities for the mode families 
n=10. 

The modes with m=l are the most stable in either polarization while the less stable ones have 
IC., = n . 

CONCLUSIONS 
We have studied the LEP for the E and H-polarized modes in a circular dielectric microcavity. 
The analysis has revealed the following facts: the WG mode fields have the quasi-total-reflection 
mechanism and exponentially small thresholds getting down with index n.  Non-WG modes have the 
frequencies and thresholds coupled by a hyperbolic relation; their thresholds are much higher than for 
WG modes. The ranges of the WG and non-WG mode spectra are divided by the value K = n , thus 
n,a-' < 2m&~ < n for the WG modes and n < 2m4: for the non-WG ones. In each n-th family 
of either polarization, WG., (m=l) mode is the most stable and has the lowest threshold. In the range 
K < n/a  , lasing modes are not found. Finally, we have observed that the material-gain thresholds of 
the E-polarized WG modes are considerably (by an order) smaller that those of the H-polarized modes 
of similar field pattern. 
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