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Abstract: We consider the lasing modes in a thin kite-shaped 
active microcavity as solutions to the 2-D linear eigenproblem for 
the Maxwell equations with exact boundary and radiation 
conditions. This problem is reduced to the set of Muller’s integral 
equations with smooth and integrable kernels discretized using the 
adequate quadrature formulas. The eigenvalues are found 
numerically as the roots of the corresponding determinantal 
equation. The results of the study of several modes are presented. 

I.  INTRODUCTION

A serious drawback of circular microdisk lasers is the low 
directionality of light emission because any whispering-gallery 
mode with azimuth index m has 2m identical beams in the disk 
plane. Directionality can be conveniently quantified with the 
aid of directivity as a ratio of power emitted into the main beam 
direction to the total power averaged over all directions. Then 
any mode of a circular cavity with m > 0 has directivity equal 
to 2. It is evident that improvement of the directionality needs a 
distortion of the cavity shape from the circle. As such a 
deformed shape, we will study the kite cavity whose contour 
can be characterised using a smooth function. 

II.  EIGENVALUE PROBLEM FOR ACTIVE MICROCAVITIES

Denote the interior domain of a two-dimensional (2-D) 
model of an active dielectric (non-magnetic) microcavity as 

, its closed contour as , and the outer domain as .
Consider a function , which is either the 

iD eD
( , )U x y zE  or the zH

field component. When simulating a microlaser, we are 
interested in real-valued pairs of numbers ( , )k  generating 
non-zero functions U solving, off , the Helmholtz equation 

 with a piecewise-constant effective refractive 
index 

2 2( )k U 0
 equal to i i i ( 0)  in , and iD e e  in 

. Here, the following two-side boundary conditions are 
required on :  and , where 
the superscripts “ “ refer to the corresponding domains, 

eD
eU U i /i n/e

e iU n U
,i e

, 1i e  (E-polarisation) or 2
, 1/i e i e,  (H-polarisation), and n

is the outward normal vector to . Furthermore, the time-
averaged electromagnetic energy must be locally integrable to 
prevent source-like field singularities, and the Sommerfeld 
radiation condition must be satisfied at infinity. This is the 
Lasing Eigenvalue Problem (LEP) that we have introduced in 

[1] and systematically used in [2]-[5] to study the modes in 
various active cavities. 

In this paper, we consider a kite-shaped microcavity (Fig.1).  

(a) (b) (c)

Fig. 1. Geometries of microcavity for different values of 
parameter a b c

For the contour representation, we use the following 
smooth (i.e. infinitely continuously differentiable) function, 
where [0,2 ]t :

r( ) ( ), ( ) ,
( ) cos cos 2 , ( ) sin
t x t y t

x t t t y t t
(1) 

Here,  is the contour shape parameter, so that if 0
then (4) turns to a circle. Note that the values of 0.29
provide convex contours and the true kite shape appears only if 

 takes larger values. 

III. MULLER’S INTEGRAL EQUATIONS

Introduce the Green’s functions  of 
the homogeneous media, where 

(1)
0( ) ( / 4) ( )j jG R i H k R

,j i e , |R r r |  is the 
distance between the points  and , and r r (1)

0 ( )H  is the 
Hankel function. After applying the second Green’s formula to 
the functions ( , )jG r r  and jU , using boundary conditions, 
and taking into account the properties of single-layer and 
double layer potentials, we obtain two integral equations as 

( ) ( ) ( , ) ( ) ( , ) 0r r A r r dl r B r r dl ,

( ) ( ) ( , ) ( ) ( , ) 0
2
i e

e

r r C r r dl r D r r dl , (2) 
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where  is the element of the arc on ,dl ( ) ( )ir U r  and 
( ) ( ) / ,ir U r n r .
Here, the kernel functions are 

( , ) ( , ) / ( , ) /i eA r r G r r n G r r n ,

( , ) ( , ) / ( , )i i e eB r r G r r G r r (3) 

,2 2( , ) ( , ) / ( , ) /i eC r r G r r n n G r r n n

( , ) ( , ) / ( / ) ( , ) /i i e eD r r G r r n G r r n (4) 

Note that the kernel functions ( , )A t  and ( , )D t  are 
continuous, and the kernel functions ( , )B t  and ( , )C t  have 
logarithmic singularities. 

IV. DISCRETIZATION OF INTEGRAL EQUATIONS

One of the most efficient discretization techniques is the 
method of quadratures, also known as the Nystrom method [6]-
[8]. This latter method is based on the replacement of the 
integrals with approximate sums using the appropriate 
quadrature formulas. As some of the kernel functions have 
logarithmic singularities, it is convenient to represent all of the 
kernels in (3) and (4) in such a way that these singularities are 
extracted [7],[8]. Then the integrals are approximated by two 
different quadrature rules for the regular and singular parts 
with the same equidistant set of points /pt p N ,

. Namely, we use a trigonometric quadrature 
rule for the parts with logarithmic singularities and a 
trapezoidal rule for the regular parts [5]. By evaluating the 
integrals from (1) for each 

0,1,..., 2 1p N

st t  with the aid of the quadrature 
rules, we obtain a determinantal equation for the eigenvalues. 
A secant-type iterative method [2] is further used to find the 
eigenvalues numerically from this equation.  

V. NUMERICAL RESULTS

For simplicity, we consider the kite contour as a continuous 
deformation of the circle, and therefore denote the modes of 
the kite cavity using the notations of their limiting forms in the 
circle with a prefix “quasi”. In Fig. 2, we present the 
dependences of the lasing frequency and threshold gain of the 
doublet of low-order modes quasi-H21 on the kite contour 
deformation parameter, . The initial values of thresholds of 
these modes are quite high. If  gets larger, the frequencies of 
both modes grow up. Unlike this, only one of the modes (odd 
with respect to the x-axis) has the threshold that grows up 
monotonically while another (even mode) displays a maximum 
of threshold around  = 0.3. 

The shape of the far-field radiation pattern changes very 
dramatically with the growth of In Fig. 3, the patters of the 
modes quasi-H21 are shown for the maximum value of of the 
studied range, i.e.  = 0.5. As visible, the directivity can be 
both larger and smaller than the circular-cavity value 2. 
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Fig. 2. Normalized lasing frequency (a) and threshold gain (b) 
as a function of the kite deformation parameter , for the 
doublet of quasi-H2,1 modes,  = 2.63, N = 50 

In Fig. 4, presented are the lasing frequencies and thresholds 
for the doublet of modes quasi-H51 that display the features of 
the whispering-gallery modes at  = 0. Their initial thresholds 
are some 10 times lower than those of the quasi-H21 modes.  
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Fig. 3. Normalized far-field emission patterns for  = 0.5,  = 
2.63, and N = 50: (a) quasi-H2,1 even, directivity = 3.43; (b) 
quasi-H2,1 odd, directivity = 1.98. 
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Fig. 4. The same as in Fig. 2 however for the modes quasi-H51.

The even-type mode of this doublet also show a maximum 
threshold value around  = 0.2. In Fig. 5, the far-field patters of 
the modes quasi-H51 are shown for  = 0.5. As visible, at such 
deformation their directivities are larger than for the low-order 
modes quasi-H21. Note that the number of emission lobes is no 
more the same as in the circular cavity. 
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Fig. 5. The same as in Fig. 2 however for the modes (a) quasi-
H51 even, directivity = 3.71; (b) quasi-H51 odd, directivity = 2.74 

VI. CONCLUSIONS

We have presented preliminary results of the LEP-based 
numerical analysis of the lasing modes in the 2-D model of a 
kite-shaped thin microcavity laser. This shape is attractive as it 
enables one to study the variations of the near and far-field 
modal patterns, and also the lasing frequencies and threshold 
gains for a variety of shapes changing smoothly from a circle 
to a “boomerang” cavity. As one can see, even small 
deformations of this sort can lead to considerable changes of 
the emission patterns and thus provide greater directivities.  
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