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MATHEMATICAL AND NUMERICAL ANALYSIS OF THE
GENERALIZED COMPLEX-FREQUENCY EIGENVALUE PROBLEM

FOR TWO-DIMENSIONAL OPTICAL MICROCAVITIES\ast 
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Abstract. The current paper proposes a parametric eigenvalue problem for the Helmholtz
equation on the plane based on two well-known physical models of emission from two-dimensional
(2-D) microcavity lasers. The first model has been developed for passive, either lossy or lossless,
open cavities and is usually referred to as the Complex-Frequency Eigenvalue Problem. The second
model, named the Lasing Eigenvalue Problem (LEP), has been tailored to characterize emission
from open cavities, filled in with gain material, on the threshold of nonattenuating in time radiation.
Our generalized model contains both of them as special cases. We reduce the original problem to a
nonlinear eigenvalue problem for a set of boundary integral equations with weakly singular kernels
and formulate it as a parametric eigenvalue problem for a holomorphic Fredholm operator-valued
function, which is convenient for mathematical and numerical analysis. Using this formulation and
fundamental results of the theory of holomorphic operator-valued functions, we study the properties
of the spectrum. For numerical solution of the problem, we propose a Nystr\"om method, prove its
convergence, and derive error estimates in the eigenvalue approximation. Combining this discretiza-
tion with the residual inverse iteration technique, we compute approximate solutions of LEP and
compare them with the exact ones and with the results obtained using other numerical methods.

Key words. microcavity laser, nonlinear eigenvalue problem, M\"uller boundary integral equa-
tions, Nystr\"om method
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1. Introduction. Microcavity lasers have been studied experimentally and the-
oretically since the 1990s (see, e.g., [5], [14], [25], [43]). Most of the authors used
a physical model based on the search of complex-valued natural frequencies of pas-
sive open (lossless and lossy) cavities---this is usually called the Complex-Frequency
Eigenvalue Problem (CFEP). As is easy to see, traditional modal analysis of a pas-
sive cavity neglects the presence of gain material and delivers mode frequencies and
Q-factors only. Hence it is unable to determine and compare the most important char-
acteristic of laser mode---the threshold gain. To overcome this significant drawback,
several approaches were proposed (see review in [28]). One of them is the analysis
of on-threshold modes of microcavity lasers with the aid of a modified electromag-
netic eigenvalue problem, specifically tailored to extract the threshold values of gain
in addition to the emission frequencies, as components of the two-component eigen-
values. Such a modified formulation, called the Lasing Eigenvalue Problem (LEP),
was first introduced in 2004 in [29] and has since gained recognition in the photonics
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community.
If a microcavity, either passive or active, is shaped as a thinner-than-wavelength

flat configuration, then one can reduce the dimensionality of analysis from three-
dimensional (3-D) to two-dimensional (2-D), in the median plane, using the replace-
ment of the refractive index with its effective value [10], [25]. This is an empirical
transition; however, it is in good agreement with the experimentally found fact that
the emission from thin cavities is observed mostly in the cavity plane, its directionality
being controlled by the shape of the contour. Thin flat microcavities may have various
shapes, and the above mentioned review papers provide references to the numerous
efforts of researchers to find, using CFEP as a framework, a shape of the 2-D contour
that improves the directionality of emission. Still, it is clear that such improvement
must not be achieved at the expense of dramatic growth in threshold, which is not
accessible in CFEP. Therefore, LEP is not only a mathematical model, which is more
adequate to a laser, although only on the threshold, but is also an attractive instru-
ment in the numerical optimization accounting both for directivity and threshold of
lasing [31], [34] [45], [46].

Significant progress has been achieved for 2-D microcavities in [31], where LEP
was reduced to a nonlinear spectral problem for the set of boundary integral equations
(BIEs) named after M\"uller (see Chap. VI. of [23]). This set is a reliable and efficient
tool for the analysis of electromagnetic modes both of the laser cavities with active
regions, within LEP, and of the passive open resonators, within CFEP [4]. In [31],
the M\"uller BIEs were solved accurately by the Nystr\"om method, and the numerical
experiments demonstrated the exponential convergence of the approximate eigenval-
ues to exact ones, with progressively larger discretization orders. A similar study
was performed in [39] for traditional CFEP; however, with the aid of a less economic
discretization technique.

The authors of the above papers concentrated their research on the features of
the proposed algorithms and physical interpretation of numerical results rather than
on the mathematical aspects including the properties of the spectra of eigenvalues
and the convergence analysis. The main idea of the present article is to conduct a
thorough mathematical study of CFEP and LEP as well as to provide a rigorous
proof of convergence of the Nystr\"om method. Our consideration is based on the
fundamental results of the theory of holomorphic operator-valued functions in a pair
of Banach spaces (see, e.g., Appendix in [20] and references therein). The concept of
eigenvalue problems for the holomorphic Fredholm operator-valued functions supplies
an important tool for the numerical analysis of approximations of such eigenvalue
problems. This analysis has a long tradition [13], [16], [17], [40], [42]. It has been
used for proving convergence of various numerical algorithms for nonlinear spectral
problems in many applications [8], [9], [11], [15], [32], [37]. We apply it for the Nystr\"om
method within CFEP and LEP. Thus, the results of our paper extend significantly the
range of microdevices that allow a study by fully grounded mathematical methods.

First of all, we propose a more general parametric eigenvalue problem for the
Helmholtz equation on the plane than CFEP and LEP. It contains both of them as
special cases. We call it the generalized CFEP (GCFEP). Its complex eigenvalues k
are possible values of the free-space wavenumber. They depend on the real-valued
loss/gain index \gamma \in \BbbR , i.e., the imaginary part of the refractive index. If \gamma = 0,
then the cavity is lossless. Negative values of \gamma correspond to losses. If \gamma \leq 0, then
the statement of GCFEP corresponds exactly to CFEP for a passive cavity. If for a
positive \gamma there exists a positive eigenvalue k, then this \gamma is the threshold value of
gain, and the pair (k, \gamma ) together with the corresponding eigenfunction satisfy all the
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conditions of LEP.
Then we use the M\"uller BIEs and reduce GCFEP to a parametric eigenvalue

problem for a holomorphic Fredholm operator-valued function, which involves weakly
singular integral operators. Based on this statement of the problem we investigate
the qualitative properties of the spectrum: the localization on the corresponding
Riemann surface, the discreteness, the algebraic multiplicity, and the dependence of
the eigenvalues k on the loss/gain parameter \gamma \in \BbbR (Theorem 4.4). Currently, similar
spectral properties of the solutions of LEP are known only for the microcavities of
the circular shape [29]. They are obtained by the method of separation of variables
and the use of the theorems of complex calculus.

After that, using the Nystr\"om method, we build a sequence of finite-dimensional
holomorphic operator-valued functions that regularly approximates the original holo-
morphic Fredholm operator-valued function on the Riemann surface. This enables us
to apply the results of [16], [17] to the numerical analysis of the proposed method
(Theorems 5.1 and 5.2). We solve the obtained finite-dimensional nonlinear algebraic
eigenvalue problem using a variant of the residual inverse iteration method [24] de-
scribed in [33]. Analysis of numerical experiments presented in the last section of the
article demonstrates exponential convergence of the Nystr\"om method. The approx-
imate solutions coincide with known exact solutions of LEP for circular microcavi-
ties [29] and are in good agreement with results obtained for CFEP for square [44] and
triangle [12] microcavities using the finite-difference time-domain (FDTD) method.

2. Generalized complex-frequency eigenvalue problem. In this section,
we formulate GCFEP for 2-D dielectric microcavities of arbitrary shape shown in
Figure 1. The problem statement is based on two physical models of emission from
2-D microcavity lasers: CFEP and LEP (see, e.g., [4] and [31], respectively). We as-
sume that the electric field E = (E1, E2, E3) and the magnetic field H = (H1, H2, H3)
depend on time as \sim exp( - ikct), where k is the complex-valued wavenumber and c
stands for the free-space light velocity. We also assume that the fields do not vary
along the x3 axis and can be characterized by means of a scalar function u, which is
the E3 or H3 component depending on the polarization. Suppose that all considered
materials are nonmagnetic and characterized with the corresponding relative dielec-
tric permittivity \varepsilon , or, equivalently, refractive index, \nu =

\surd 
\varepsilon . Denote the complex

refractive index in the bounded domain \Omega i as \nu i = \alpha i  - i\gamma . Here, \alpha i > 0 is the
known real part of \nu i and \gamma \in \BbbR is the loss/gain index (a real-valued parameter of the
problem). The refractive index in the unbounded domain \Omega e = \BbbR 2\setminus \=\Omega i is known and
positive, \nu e = \alpha e > 0.

ν� = αi -iγ 

x3

Ωi

x2

x1

Ωe

Γ

ν�= αe

Fig. 1. Geometry of a uniformly active 2-D dielectric resonator of arbitrary shape.

Denote by R0 the minimum value of the radius of a circle \Omega R0
centered at the

origin such that \Omega i \subset \Omega R0
. We assume that the boundary \Gamma of the cavity is a twice
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continuously differentiable curve and we assume and introduce the outer normal unit
vector n to that boundary. Denote by U the space of all complex-valued functions
continuous on \=\Omega i and \=\Omega e and twice continuously differentiable on \Omega i and \Omega e. Let \BbbL be
the Riemann surface of the function ln k. For any given value of the parameter \gamma \in \BbbR ,
a nonzero function u \in U is referred to as an eigenfunction of GCFEP corresponding
to an eigenvalue k \in \BbbL if the following relations are satisfied: the Helmholtz equation,

(2.1) \Delta u(x) + k2ju(x) = 0, x \in \Omega j , j = i, e,

the transmission conditions,

(2.2) u - = u+, \eta i
\partial u - 

\partial n
= \eta e

\partial u+

\partial n
, x \in \Gamma ,

and the outgoing Reichardt radiation condition [18], [26],

(2.3) u(r, \varphi ) =

\infty \sum 
l= - \infty 

alH
(1)
l (ker) exp(il\varphi ), r \geq R0.

Here, kj = k\nu j , u = H3, \eta j = \nu  - 2
j in the H-polarization case and u = E3, \eta j = 1 for

the E-polarization, j = i, e; as usual, H
(1)
l (z) is the Hankel function of the first kind

and index l; r and \varphi are the polar coordinates of the point x; and u - (u+) is the limit
value of the function u from inside (outside) of the boundary \Gamma .

Following [7, p. 68], we assume that the limit values of the normal derivative on
the boundary exist in the sense that the limits

(2.4)
\partial u\pm 

\partial n
(x) = lim

h\rightarrow +0
(n(x), grad u(x\pm hn(x)) , x \in \Gamma ,

exist uniformly on \Gamma . Note that for any solution u of (2.1) in \Omega e the series in (2.3)
converges uniformly and absolutely on any closed domain a \leq r \leq b, where a and b
are arbitrary numbers such that R0 < a < b < \infty ; and this series is infinitely termwise
differentiable (see, e.g., [18]).

Within GCFEP, we are looking for the eigenvalues k on the Riemann surface \BbbL ,
since the Hankel functions H

(1)
l (k\nu er) are multivalued functions of the variable k, but

we want to consider these functions as holomorphic (see, e.g., [18]). Denote by \BbbL 0

the principal sheet of the Riemann surface \BbbL with the branch cut along the negative
imaginary axis. If k \in \BbbL 0 and Im k > 0 (< 0), then u exponentially decays (grows) at
infinity [18], i.e., at r \rightarrow \infty . If Im k = 0, then the Reichardt radiation condition (2.3)
is equivalent [18] to the Sommerfeld radiation condition:

(2.5)

\biggl( 
\partial 

\partial r
 - ike

\biggr) 
u = o

\biggl( 
1\surd 
r

\biggr) 
, r \rightarrow \infty .

The eigenvalues k of GCFEP depend on the loss/gain index \gamma \in \BbbR . If \gamma is
equal to or less than zero, then the cavity is passive (lossless or lossy, respectively).
For \gamma \leq 0, the statement of GCFEP coincides exactly with the statement of CFEP [4].
In this case, as known from the Poynting theorem (see, e.g., [4]), all the eigenvalues k
are located strictly on the lower half of \BbbL 0, i.e., have Im k < 0. For positive \gamma ,
that corresponds to the gain in the cavity (active cavity), some of the eigenvalues k
can belong to the real axis and the upper half of \BbbL 0. Note also that for the time-
harmonic electromagnetic field, if a complex k is an eigenvalue of GCFEP, then  - \=k
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is also the eigenvalue (as usual, by \=k we denote the complex conjugate of k). If for
some \gamma > 0 there exists an eigenvalue k > 0, then the pair (k, \gamma ) and the corresponding
eigenfunction u satisfy all the conditions of LEP [31]. Such a value of \gamma is the threshold
value of the gain index of the cavity material that is needed to compensate for the
radiation losses and provide non-attenuating in the time field function. It is important
to note that these values of \gamma are different for different k.

Theorem 2.1. For each \gamma \in \BbbR the positive imaginary semiaxis \BbbI + of the principal
sheet \BbbL 0 of \BbbL is free of the eigenvalues k of problem (2.1)--(2.3).

Proof. We prove the theorem only for the H-polarized field. The proof for the
E-polarization is analogous. Suppose that u is an eigenfunction of problem (2.1)--
(2.3) corresponding to the eigenvalue k = i\sigma , where \sigma > 0. We apply the first Green's
theorem (see, e.g., [7, p. 68] ) to the functions u and \=u on the domains \Omega i and \Omega R \setminus \Omega i,
R \geq R0. Let \Omega R be the open circle of a radius R \geq R0 centered at the origin. We
obtain the following equalities, respectively:\int 

\Omega i

\nabla u \cdot \nabla \=udx+

\int 
\Omega i

\=u\Delta udx =

\int 
\Gamma 

\=u - \partial u - 

\partial n
dl,(2.6) \int 

\Omega R\setminus \Omega i

\nabla u \cdot \nabla \=udx+

\int 
\Omega R\setminus \Omega i

\=u\Delta udx =  - 
\int 
\Gamma 

\=u+ \partial u+

\partial n
dl +

\int 
\Gamma R

\=u
\partial u

\partial r
dl,(2.7)

where `` \cdot "" is the standard inner product on \BbbR 2 and \Gamma R is the boundary of \Omega R.
Taking the limit as R \rightarrow \infty on the left-hand side and on the right-hand side of (2.7),
we obtain

(2.8)

\int 
\Omega e

\nabla u \cdot \nabla \=udx+

\int 
\Omega e

\=u\Delta udx =  - 
\int 
\Gamma 

\=u+ \partial u+

\partial n
dl.

Multiplying both sides of (2.6) and (2.8) with \eta i and \eta e, respectively, adding the
resulting equations term by term, and taking into account the transmission conditions
(2.2), we derive

(2.9) \eta i

\int 
\Omega i

| \nabla u| 2dx+ \eta i

\int 
\Omega i

\=u\Delta udx+ \eta e

\int 
\Omega e

| \nabla u| 2dx+ \eta e

\int 
\Omega e

\=u\Delta udx = 0.

Let \gamma \not = 0. Combining (2.9) and (2.1), we obtain

(2.10)
\alpha 2
i  - \gamma 2 + i2\alpha i\gamma 

(\alpha 2
i + \gamma 2)2

\int 
\Omega i

| \nabla u| 2dx+
1

\alpha 2
e

\int 
\Omega e

| \nabla u| 2dx+ \sigma 2

\int 
\BbbR 2

| u| 2dx = 0.

Equating the imaginary part of left-hand side in (2.10) to zero, we see that

(2.11)
2\alpha i\gamma 

(\alpha 2
i + \gamma 2)

2

\int 
\Omega i

| \nabla u| 2dx = 0.

The integral on the left-hand side in (2.11) is zero because the common factor is
strictly positive or negative. Therefore, using (2.10), we establish that

(2.12)
1

\alpha 2
e

\int 
\Omega e

| \nabla u| 2dx+ \sigma 2

\int 
\BbbR 2

| u| 2dx = 0.

Then, the function u is zero on \BbbR 2, since the factors before the integrals in (2.12) are
positive.
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Let \gamma = 0, then \eta i = 1/\alpha 2
i . Therefore, it follows from (2.9) and (2.1) that

(2.13)
1

\alpha 2
i

\int 
\Omega i

| \nabla u| 2dx+
1

\alpha 2
e

\int 
\Omega e

| \nabla u| 2dx+ \sigma 2

\int 
\BbbR 2

| u| 2dx = 0.

Since the factors before the integrals in (2.13) are positive, the function u is identical
zero on \BbbR 2, which contradicts our initial assumption that u is an eigenfunction of
problem (2.1)--(2.3), and the proof is completed.

3. M\"uller boundary integral equations. In this section, we reduce GCFEP
to an eigenvalue problem for a set of BIEs.

Lemma 3.1. Let \gamma \in \BbbR be given. If u is an eigenfunction of problem (2.1)--(2.3)
corresponding to an eigenvalue k \in \BbbL , then

u(x) =  - 
\int 
\Gamma 

\biggl( 
u - (y)

\partial Gi(k, \gamma ;x, y)

\partial n(y)
 - Gi(k, \gamma ;x, y)

\partial u - (y)

\partial n(y)

\biggr) 
dl(y), x \in \Omega i,(3.1)

u(x) =

\int 
\Gamma 

\biggl( 
u+(y)

\partial Ge(k;x, y)

\partial n(y)
 - Ge(k;x, y)

\partial u+(y)

\partial n(y)

\biggr) 
dl(y), x \in \Omega e,(3.2)

where Gj(x, y) =
i
4H

(1)
0 (kj | x - y| ), j = i, e.

Proof. To prove (3.1), it is enough to apply on \Omega i the well known integral repre-
sentation for solutions of the Helmholtz equation (see, e.g., [7, Theorem 3.1, p. 68]).
The proof of (3.2) is similar. Indeed,

(3.3) u(x) =

\int 
\Gamma 

\biggl( 
u+(y)

\partial Ge(k;x, y)

\partial n(y)
 - Ge(k;x, y)

\partial u+(y)

\partial n(y)

\biggr) 
dl(y)

 - 
\int 
\Gamma R

\biggl( 
u - (y)

\partial Ge(k;x, y)

\partial r(y)
 - \partial u - (y)

\partial r(y)
Ge(k;x, y)

\biggr) 
dl(y), x \in \Omega R\setminus \Omega i.

Arguing as in the proof of Lemma 5.1 in [18], we see that the second integral in the
right-hand side of (3.3) vanishes for any k \in \BbbL , \gamma \in \BbbR , and u satisfying (2.3).

Using (2.2), we define the functions

(3.4) u(x) = u+(x) = u - (x), v(x) =
\eta e + \eta i
2\eta i

\partial u+(x)

\partial n(x)
=

\eta e + \eta i
2\eta e

\partial u - (x)

\partial n(x)
, x \in \Gamma .

Adding term by term the limit values of the integral representations (3.1), (3.2), and
their normal derivatives from both sides of the boundary \Gamma and using the well known
properties of the potentials (see, e.g., [7, p. 47]), we derive

u(x) - 
\int 
\Gamma 

K1,1(k, \gamma ;x, y)u(y)dl(y) - 
\int 
\Gamma 

K1,2(k, \gamma ;x, y)v(y)dl(y) = 0, x \in \Gamma ,(3.5)

v(x) - 
\int 
\Gamma 

K2,1(k, \gamma ;x, y)u(y)dl(y) - 
\int 
\Gamma 

K2,2(k, \gamma ;x, y)v(y)dl(y) = 0, x \in \Gamma ,(3.6)
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where the kernels are

K1,1(k, \gamma ;x, y) =
\partial Ge(k;x, y)

\partial n(y)
 - \partial Gi(k, \gamma ;x, y)

\partial n(y)
, x, y \in \Gamma ,(3.7)

K1,2(k, \gamma ;x, y) =
2\eta e

\eta e + \eta i
Gi(k, \gamma ;x, y) - 

2\eta i
\eta e + \eta i

Ge(k;x, y), x, y \in \Gamma ,(3.8)

K2,1(k, \gamma ;x, y) =
\partial 2Ge(k;x, y)

\partial n(x)\partial n(y)
 - \partial 2Gi(k, \gamma ;x, y)

\partial n(x)\partial n(y)
, x, y \in \Gamma ,(3.9)

K2,2(k, \gamma ;x, y) =
2\eta e

\eta e + \eta i

\partial Gi(k, \gamma ;x, y)

\partial n(x)
 - 2\eta i

\eta e + \eta i

\partial Ge(k;x, y)

\partial n(x)
, x, y \in \Gamma .(3.10)

The set of integral equations (3.5), (3.6) is called the set of M\"uller boundary integral
equations (BIEs) (see, e.g., [31]). The next lemma was proved in [36].

Lemma 3.2. For each k \in \BbbL , \gamma \in \BbbR , and x \in \Gamma we have

lim
y\rightarrow x

K1,1(k, \gamma ;x, y) = 0, lim
y\rightarrow x

K1,2(k, \gamma ;x, y)

ln | x - y| 
=

(\eta i  - \eta e)

\pi (\eta e + \eta i)
,(3.11)

lim
y\rightarrow x

K2,1(k, \gamma ;x, y)

ln | x - y| 
=

k2i  - k2e
4\pi 

, lim
y\rightarrow x

K2,2(k, \gamma ;x, y) =
\xi (x)

2\pi 

\biggl( 
\eta i  - \eta e
\eta e + \eta i

\biggr) 
,(3.12)

where \xi is the curvature of the curve \Gamma .

4. Nonlinear eigenvalue problem for a holomorphic Fredholm operator-
valued function. By C(\Gamma ), we denote the Banach space of continuous functions on \Gamma 
with the usual maximum norm (see, e.g., [21, p. 3])

(4.1) | | u| | \infty = max
x\in \Gamma 

| u(x)| .

We introduce the following integral operators with kernels defined in (3.7)--(3.10):

(4.2) (Bi,j(k, \gamma )wj) (x) =

\int 
\Gamma 

Ki,j(k, \gamma ;x, y)wj(y)dl(y), x \in \Gamma ,

where k \in \BbbL and \gamma \in \BbbR . It follows from Lemma 3.2 that (see, e.g., [21, Theorem 2.8,
p. 17, and Problem 2.3, p. 27]) for each k \in \BbbL and \gamma \in \BbbR the operators Bi,j : C(\Gamma ) \rightarrow 
C(\Gamma ) are bounded with

(4.3) | | Bi,j(k, \gamma )| | \infty = max
x\in \Gamma 

\int 
\Gamma 

| Ki,j(k, \gamma ;x, y)| dl(y), i, j = 1, 2.

Moreover, these integral operators are compact (see, e.g., [21, Theorem 2.23, p. 26]).
Therefore, the next theorem is true.

Theorem 4.1. For each k \in \BbbL and \gamma \in \BbbR the integral operator B : W \rightarrow W ,
where W = C(\Gamma ) \times C(\Gamma ), defined by

(4.4) B(k, \gamma )w =

\biggl[ 
B1,1(k, \gamma ) B1,2(k, \gamma )
B2,1(k, \gamma ) B2,2(k, \gamma )

\biggr] \biggl[ 
u
v

\biggr] 
, w = (u, v)

T
, u, v \in C(\Gamma ),

is compact.

Let us rewrite set (3.5), (3.6) in the form

(4.5) w = B(k, \gamma )w.

We are interested in finding k \in \BbbL and \gamma \in \BbbR such that there exist nonzero solutions
w \in W of (4.5).

D
ow

nl
oa

de
d 

09
/0

3/
20

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1984 SPIRIDONOV, OKTYABRSKAYA, KARCHEVSKII, AND NOSICH

Theorem 4.2. Assume that \gamma \in \BbbR is given. If u \in U is an eigenfunction of
problem (2.1)--(2.3) corresponding to an eigenvalue k \in \BbbL , then the function

(4.6) w =

\biggl( 
u+,

\eta e + \eta i
2\eta i

\partial u+

\partial n

\biggr) T

=

\biggl( 
u - ,

\eta e + \eta i
2\eta e

\partial u - 

\partial n

\biggr) T

,

belongs to W , and w is a nontrivial solution of (4.5) with the same values of k and \gamma .

Proof. The first assertion follows immediately from Lemma 3.1. Indeed, any
eigenfunction of (2.1)--(2.3) is continuous on \=\Omega i and \=\Omega e, hence u+ and u - belong
to C(\Gamma ). Further, \partial u+/\partial n and \partial u - /\partial n defined in (2.4) belong to C(\Gamma ) as the
uniform limits of the continuous functions. Clearly, w defined in (4.6) is the solution
of (4.5) by construction of this equation. If we assume that w = 0, then using (3.1)
and (3.2), we see that u = 0, x \in \BbbR 2, which contradicts the assumption that u is an
eigenfunction of GCFEP (2.1)--(2.3).

The assertion in the opposite direction relative to the statement of Theorem 4.2
is not true (see, e.g., [22]). The nonequivalence of the eigenvalue problems (2.1)--
(2.3) and (4.5) implies that, in general, the M\"uller boundary integral formulation
(4.5) exhibits additional complex eigenvalues which are not eigenvalues of (2.1)--(2.3).
Paper [22] and references therein suggest some ways how these additional complex
eigenvalues can be identified and removed. In practice, we use M\"uller BIEs only
for numerical solving LEP with real-valued eigenvalues and do not observe spurious
modes.

Let us choose a fixed \gamma \in \BbbR and put A(k) = I  - B(k), where I : W \rightarrow W is
the identity operator, and B(k) : W \rightarrow W is defined in (4.4). For each k \in \BbbL the
operator B(k) is compact. A nonzero vector w \in W is called an eigenvector of the
operator-valued function A(k) corresponding to an eigenvalue k \in \BbbL if

(4.7) A(k)w = (I  - B(k))w = 0

is satisfied. Denote by \scrL (W,W ) the space of all bounded linear operators acting
in W . The set \sigma (A) of all k \in \BbbL , for which the operator A(k) does not have
a bounded inverse operator on W , is called the spectrum of A(k), and \rho (A) =

\{ k \in \BbbL : A(k)
 - 1 \in \scrL (W,W )\} is called the resolvent set of A(k).

The operator-valued function B(k) \in \scrL (W,W ) is called holomorphic in k \in \BbbL if
it can be represented as the sum of a power series

B(k) =

\infty \sum 
p=0

Bp(k  - k0)
p
, Bp \in \scrL (W,W ),

which is convergent in \scrL (W,W ) in a neighborhood of every point k0 \in \BbbL .
Theorem 4.3. For each \gamma \in \BbbR the operator-valued function B(k) is holomorphic

in k \in \BbbL .
Proof. We prove that the operator-valued function B(k) is holomorphic in k \in \BbbL 

for each \gamma \in \BbbR following [27] (see also [19, p. 365]). This is true if and only if
for each w \in W and for each bounded linear functional g defined on W , the func-
tion g [B(k)w] is holomorphic in k \in \BbbL . Let us recall that the kernels Ki,j , i, j = 1, 2,
are holomorphic functions in k \in \BbbL for each \gamma \in \BbbR ,

(4.8) Ki,j(k;x, y) =

\infty \sum 
p=0

K
(p)
i,j;k(k0;x, y)

(k  - k0)
p

p!
, | k  - k0| < \varepsilon i,j , k0 \in \BbbL .
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Here, K
(p)
i,j;k is the pth derivative of the function Ki,j with respect to the variable k.

Hence,

(Bi,j(k)wj)(x) =

\int 
\Gamma 

Ki,j(k;x, y)wj(y)dl(y)(4.9)

=

\int 
\Gamma 

\infty \sum 
p=0

K
(p)
i,j;k(k0;x, y)

(k  - k0)
p

p!
wj(y)dl(y)

=

\infty \sum 
p=0

(k  - k0)
p
\int 
\Gamma 

1

p!
K

(p)
i,j;k(k0;x, y)wj(y)dl(y), w = (w1, w2).

Arguing as in the proofs of Lemmas 1--4 in [36], we see that

lim
| x - y| \rightarrow 0

K
(p)
i,i;k(k0;x, y) = 0, i = 1, 2, p = 1, 2, . . . ,(4.10)

lim
| x - y| \rightarrow 0

1

p!
K

(p)
1,2;k(k0;x, y) =

( - 1)
p
(\eta e  - \eta i)

\pi kp0(\eta e + \eta i)p
, p = 1, 2, . . . ,(4.11)

lim
| x - y| \rightarrow 0

K
(1)
2,1;k(k0;x, y)

ln | x - y| 
=

k0
\bigl( 
\nu 2i  - \nu 2e

\bigr) 
2\pi 

, lim
| x - y| \rightarrow 0

K
(2)
2,1;k(k0;x, y)

ln | x - y| 
=

\nu 2i  - \nu 2e
2\pi 

,(4.12)

lim
| x - y| \rightarrow 0

1

p!
K

(p)
2,1;k(k0;x, y) =

( - 1)
p - 3 \bigl( 

\nu 2i  - \nu 2e
\bigr) 

2\pi kp - 2
0 p(p - 1)(p - 2)

, p = 3, 4, . . . ,(4.13)

for all k0 \in \BbbL , x, y \in \Gamma . Therefore, combining (4.10)--(4.13) with asymptotic expan-
sions of the Bessel functions of large orders (see, e.g., [1, p. 365]), we see that in (4.9)

the operators B
(p)
i,j : C(\Gamma ) \rightarrow C(\Gamma ), defined by

(4.14)
\Bigl( 
B

(p)
i,j;k(k0)wj

\Bigr) 
(x) =

\int 
\Gamma 

1

p!
K

(p)
i,j;k(k0;x, y)wj(y)dl(y), x \in \Gamma , k0 \in \BbbL ,

are uniformly bounded in the parameter p, hence the operator

(4.15) B(p)w =

\Biggl[ 
B

(p)
1,1 B

(p)
1,2

B
(p)
2,1 B

(p)
2,2

\Biggr] \biggl[ 
w1

w2

\biggr] 
is uniformly bounded in p. The functional g is continuous. Therefore, for each k0 \in \BbbL 
and w \in W there exists \varepsilon > 0 such that

(4.16) g [B(k)w] =

\infty \sum 
p=0

bp(k0)(k  - k0)
p
, | k  - k0| < \varepsilon ,

where bp(k0) = g
\bigl[ 
B(p)(k0)w

\bigr] 
. Using the Weierstrass M-test, we see that the func-

tional series on the right-hand side of (4.16) converges absolutely and uniformly, since
the majorizing number series is a geometric progression. Equality (4.16) means that
the function g[B(k)w] is holomorphic in k \in \BbbL .

Now we investigate spectral properties of A(k) following the Appendix in [20].
Here we recall that a value \gamma \in \BbbR is fixed. Let k0 be an eigenvalue of A(k). The dimen-
sion of kerA(k0) is called the geometric multiplicity of k0. Let w0 be an eigenvector
corresponding to k0. The elements w1, . . . , wm - 1 in W are called generalized eigenvec-
tors if

\sum n
j=0 (j!)

 - 1
A(j)(k0)wn - j = 0, n = 1, . . . ,m - 1, where A(j)(k) = dA(k)/dkj .
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1986 SPIRIDONOV, OKTYABRSKAYA, KARCHEVSKII, AND NOSICH

It is said that the ordered collection w0, w1, . . . , wm - 1 is a Jordan chain corresponding
to k0. By S(A, k0), we denote the set of all vector functions \Phi (k) represented in the

form of \Phi (k) =
\sum m - 1

j=0 (k  - k0)
j - m

wj , where \{ wj\} m - 1
j=0 is a Jordan chain and m \geq 1,

that satisfies A(k)\Phi (k) = O(1) for small enough | k  - k0| . The dimension of S(A, k0)
is called the algebraic multiplicity of k0. If w0 is an eigenvector of A(k) corresponding

to k0, then w0(k  - k0)
 - 1 \in S(A, k0). Therefore, the geometric multiplicity does not

exceed the algebraic multiplicity.

Theorem 4.4. The following statements are true.
1. For each \gamma \in \BbbR , the resolvent set of the operator-valued function A(k) is not

empty, namely, \BbbI + \subset \rho (A).
2. For each \gamma \in \BbbR , the spectrum \sigma (A) of the operator-valued function A(k) can

be only a set of isolated points on \BbbL , which are the eigenvalues of A(k) of
finite algebraic multiplicities.

3. Each eigenvalue k of the operator-valued function A(k) depends continuously
on \gamma \in \BbbR and can appear and disappear only on the boundary of its analyticity
domain, i.e., at zero and at infinity on \BbbL .

Proof. Arguing as in the proof of [7, Theorem 3.41, p. 101], we see that for
all k \in \BbbI + and \gamma \in \BbbR problem (4.5) has only the trivial solution. Therefore, using the
compactness of the operator B(k) (see Theorem 4.1) and the Fredholm alternative
(see, e.g, [21, p. 47]), we see that the operator A(k) has a bounded inverse operator
in W for all k \in \BbbI + and \gamma \in \BbbR . Now the second assertion follows from Theorem 4.3 on
the holomorphicity of the operator-valued function B(k) and Proposition A.8.4. [20,
p. 422]. Arguing as in the proof of Theorem 4.3, we see that for each k \in \BbbL the
operator-valued function B(k, \gamma ) is real-holomorphic in \gamma \in \BbbR (see, e.g., [19, p. 365]).
Combining this with holomorphicity of B(k) in k \in \BbbL for each \gamma \in \BbbR , we see that
B(k, \gamma ) is jointly continuous in (k, \gamma ) for each (k, \gamma ) \in \BbbL \times \BbbR (see also [2, Proposition
6.1, p. 1148]). Thus assertion 3 follows from [38, Theorem 3].

The first two statements of Theorem 4.4 for \gamma \leq 0 correspond to CFEP, while
the next proposition following from Theorem 4.4 describes the spectrum of LEP.

Corollary 4.5. If for some \gamma > 0 the intersection of the spectrum \sigma (A) and
the positive real semiaxis of \BbbL 0 is not empty, then it can be only a set of isolated
points k > 0, which are the eigenvalues of A(k) of finite algebraic multiplicities.

5. Nystr\"om method. In this section, following [31], we present the Nystr\"om
method for numerical solution of problem (4.7). We assume that the contour \Gamma 
is 2-times differentiable and has the parameterization r(t) = (r1(t), r2(t)), where
t \in [0, 2\pi ]. Let us recall that the kernels K1,1 and K2,2 are the smooth functions
if \eta i = \eta e, then the kernel K1,2 is smooth, otherwise K1,2 has the logarithmic singu-
larity, and K2,1 always has the logarithmic singularity. Still, for uniformity, we write
all these functions in the form (see [6, p. 69])

(5.1) Ki,j(t, \tau ) = Qi,j(t, \tau ) ln

\biggl( 
4sin2

t - \tau 

2

\biggr) 
+ Pi,j(t, \tau ), i, j = 1, 2,

where Qi,j(t, \tau ) and Pi,j(t, \tau ) are continuous functions on [0, 2\pi ]\times [0, 2\pi ].
Let \Xi n = \{ tj\} 2n - 1

j=0 be a uniform grid on [0, 2\pi ] with the mesh size h = \pi /n,
i.e., tj = jh, j = 0, . . . , 2n - 1, n \in \BbbN , where \BbbN is the set of all positive integers. We
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are looking for approximate solutions of problem (4.7) in the form

u(n)(t) =

2n - 1\sum 
j=0

\Bigl( 
R

(n)
j (t)Q1,1(t, tj) +

\pi 

n
P1,1(t, tj)

\Bigr) 
| r\prime (tj)| uj(5.2)

+

2n - 1\sum 
j=0

\Bigl( 
R

(n)
j (t)Q1,2(t, tj) +

\pi 

n
P1,2(t, tj)

\Bigr) 
| r\prime (tj)| vj ,

v(n)(t) =

2n - 1\sum 
j=0

\Bigl( 
R

(n)
j (t)Q2,1(t, tj) +

\pi 

n
P2,1(t, tj)

\Bigr) 
| r\prime (tj)| uj(5.3)

+

2n - 1\sum 
j=0

\Bigl( 
R

(n)
j (t)Q2,2(t, tj) +

\pi 

n
P2,2(t, tj)

\Bigr) 
| r\prime (tj)| vj ,

R
(n)
j (t) =  - 2\pi 

n

n - 1\sum 
m=1

1

m
cosm(t - tj) - 

\pi 

n2
cosn(t - tj), j = 0, . . . , 2n - 1,

ui = u(ti), vi = v(ti), i = 0, . . . , 2n  - 1. In (5.2), (5.3) we use the trapezoidal rule
for approximation of integrals with continuous kernels Pi,j(t, \tau )| r\prime (\tau )| , i, j = 1, 2, and
the special quadrature rule for integrals with the kernels of the form (see [6, p. 69])

Qi,j(t, \tau ) ln

\biggl( 
4sin2

t - \tau 

2

\biggr) 
| r\prime (\tau )| , i, j = 1, 2.

These numerical integration formulas were obtained in [6] by replacing the integrands
with their trigonometric interpolation polynomials and then integrating exactly.

Equating the left-hand sides with the right-hand sides in (5.2) and (5.3) at the
grid points, we obtain the following set of linear equations for the unknown values uj

and vj , j = 0, . . . , 2n - 1:

ui  - 
2n - 1\sum 
j=0

\Bigl( 
R

(n)
| i - j| Q1,1(ti, tj) +

\pi 

n
P1,1(ti, tj)

\Bigr) 
| r\prime (tj)| uj(5.4)

 - 
2n - 1\sum 
j=0

\Bigl( 
R

(n)
| i - j| Q1,2(ti, tj) +

\pi 

n
P1,2(ti, tj)

\Bigr) 
| r\prime (tj)| vj = 0,

vi  - 
2n - 1\sum 
j=0

\Bigl( 
R

(n)
| i - j| Q2,1(ti, tj) +

\pi 

n
P2,1(ti, tj)

\Bigr) 
| r\prime (tj)| uj(5.5)

 - 
2n - 1\sum 
j=0

\Bigl( 
R

(n)
| i - j| Q2,2(ti, tj) +

\pi 

n
P2,2(ti, tj)

\Bigr) 
| r\prime (tj)| vj = 0,

where i = 0, . . . , 2n - 1 and

R
(n)
j = R

(n)
j (0) =  - 2\pi 

n

n - 1\sum 
m=1

1

m
cos

mj\pi 

n
 - ( - 1)

j
\pi 

n2
, j = 0, . . . , 2n - 1.

The solutions of the nonlinear algebraic eigenvalue problem

(5.6) An(k, \gamma )wn = (I  - Bn(k, \gamma ))wn = 0
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are approximations of solutions to (4.7) by the Nystr\"om method. Here, An(k, \gamma ) is
the matrix of the linear system (5.4), (5.5) with elements nonlinearly depending on k

and \gamma . By wn = (un, vn)
T

we denote the vector of unknowns of this system. For a
given \gamma \in \BbbR , we denote by \sigma (An) the spectrum of the matrix-valued function An(k),
and by \rho (An) its resolvent set.

Theorem 5.1. For any given \gamma \in \BbbR , the following statements are true.
1. For every eigenvalue k0 of A(k), there exists a sequence \{ kn\} n\in \BbbN converging

to k0 with the eigenvalues kn of An(k).
2. If \{ kn\} n\in \BbbN and \{ wn\} n\in \BbbN are some sequences of eigenvalues kn of An(k) and

normalized eigenfunctions wn of An(k), so that kn \rightarrow k0 \in \BbbL (n \in \BbbN ), then
(i) k0 is an eigenvalue of A(k),
(ii) \{ wn\} n\in \BbbN is a discretely compact sequence and its cluster points are nor-

malized eigenfunctions of A(k0).
3. For every compact L0 \subset \rho (A), the sequence \{ An(k)\} n\in \BbbN is stable on L0, i.e.,

there exist n(L0) and c(L0) such that L0 \subset \rho (An), \| An(k)
 - 1\| \leq c(L0) for all

k \in L0 and n \geq n(L0).

We now explain the meaning of the term ``discretely compact sequence."" The proof
of this theorem is based on the general results of the discrete convergence theory [41]
applied for investigation of approximate methods in the eigenvalue problem where the
parameter appears nonlinearly [16]. Below are some definitions and results of [16],
[41].

In this section, we consider the operator A(k) for each k \in \BbbL as an operator in
the space W = C2\pi \times C2\pi , where C2\pi is the space of 2\pi -periodic continuous functions
with the standard maximum norm,

| | u| | C2\pi 
= max

t\in [0,2\pi ]
| u(t)| , u \in C2\pi .

We introduce the space C2n of grid functions defined on \Xi n with the norm | | un| | C2n =
max0\leq j\leq 2n - 1 | un(tj)| , un \in C2n. For each given k \in \BbbL , the matrix An(k) defines the
operator in Wn = C2n \times C2n. Following [41, p. 52], we define the family of the
connection operators pn : W \rightarrow Wn as the operators restricting functions w \in W
to the grid \Xi n: pnw \in Wn is the grid function with the values (pnw)(tj) = w(tj),
j = 0, . . . , 2n  - 1. In [41, p. 52], it was proved that the operator pn belongs to the
space of bounded linear operators \scrL (W,Wn),

(5.7) \| pn\| W\rightarrow Wn
= 1,

and | | pnw| | Wn \rightarrow | | w| | W , n \rightarrow \infty , for all w \in W . By \BbbN \prime ,\BbbN \prime \prime ,\BbbN \prime \prime \prime , . . . , we denote
infinite subsequences of \BbbN . The sequence \{ wn\} n\in \BbbN \prime of elements wn \in Wn is discretely
converging to the element w \in W if | | wn  - pnw| | Wn

\rightarrow 0 for n \in \BbbN \prime ; we will write
wn - \rightarrow w (n \in \BbbN \prime ). The sequence \{ wn\} n\in \BbbN \prime of elements wn \in Wn is discretely
compact if for every subsequence \{ wn\} n\in \BbbN \prime \prime , \BbbN \prime \prime \subseteq \BbbN \prime , there exist \BbbN \prime \prime \prime \subseteq \BbbN \prime \prime and w \in W
such that wn - \rightarrow w (n \in \BbbN \prime \prime \prime ). Assume that the operator A \in \scrL (W,W ) and a
sequence An \in \scrL (Wn,Wn) is given. Then, by definition, \{ An\} n\in \BbbN \prime approximates A
if | | Anpnw  - pnAw| | Wn

\rightarrow 0 (n \in \BbbN \prime ) for all w \in W . We also say that \{ An\} n\in \BbbN \prime is
regular if | | wn| | Wn

\leq 1 (n \in \BbbN \prime ) together with the fact that \{ Anwn\} n\in \BbbN \prime is discretely
compact implies that the sequence \{ wn\} n\in \BbbN \prime is discretely compact.

Proof of Theorem 5.1. The operator-valued functions A(k) and An(k) are holo-
morphic in k \in \BbbL . The statement for A(k) was proved in Theorem 4.3, the statement
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for An(k) is proved similarly. For each k \in \BbbL the operator B(k) is compact (see
Theorem 4.1) and Bn(k) is finite-dimensional. As was proved in Theorem 4.4, the
resolvent set \rho (A) is not empty, namely, \BbbI + \subset \rho (A). Therefore, to prove Theorem 5.1,
we should check the conditions (b3)--(b5) of [16, Theorem 2]. We note here that con-
ditions (b3)--(b5) mean that the sequence \{ An(k)\} n\in \BbbN of the holomorphic Fredholm
operator-valued functions An(k) regularly approximates A(k) on \BbbL .

(b3) The sequence \{ An(k)\} n\in \BbbN is uniformly bounded on every compact L0 \subset \BbbL ,
i.e., for each compact L0 \subset \BbbL there exists c such that \| An(k)\| Wn\rightarrow Wn

\leq c for
all k \in L0, n \in \BbbN . Now we prove this statement. Let us recall that An(k) = I - Bn(k),
k \in \BbbL . Here,

(5.8) Bn(k) =

\Biggl[ 
B

(1,1)
n (k) B

(1,2)
n (k)

B
(2,1)
n (k) B

(2,2)
n (k)

\Biggr] 
is the 2-by-2 block matrix-valued function with the entries

(5.9)
\Bigl( 
B(l,m)

n (k)
\Bigr) 
i,j

=
\Bigl( 
R

(n)
| i - j| Ql,m(k, ti, tj) +

\pi 

n
Pl,m(k, ti, tj)

\Bigr) 
| r\prime (tj)| ,

where i, j = 0, . . . , 2n - 1, l,m = 1, 2. Clearly, we have the following inequality:

(5.10) \| An(k)\| Wn\rightarrow Wn
\leq 1 + 4 max

l,m=1,2

\bigm\| \bigm\| \bigm\| B(l,m)
n (k)

\bigm\| \bigm\| \bigm\| 
C2n\rightarrow C2n

.

Now we estimate a single element B
(l,m)
n (k) of the block matrix Bn(k):\bigm\| \bigm\| \bigm\| B(l,m)

n (k)
\bigm\| \bigm\| \bigm\| 
C2n\rightarrow C2n

\leq max
0\leq i\leq 2n - 1

2n - 1\sum 
j=0

\bigm| \bigm| \bigm| R(n)
| i - j| Ql,m(k, ti, tj)

\bigm| \bigm| \bigm| | r\prime (tj)| (5.11)

+ max
0\leq i\leq 2n - 1

2n - 1\sum 
j=0

\pi 

n
| Pl,m(k, ti, tj)| | r\prime (tj)| .

For each term of (5.11), we obtain the estimates

max
0\leq i\leq 2n - 1

2n - 1\sum 
j=0

\bigm| \bigm| \bigm| R(n)
| i - j| Ql,m(k, ti, tj)

\bigm| \bigm| \bigm| | r\prime (tj)| (5.12)

\leq max
t,\tau \in [0,2\pi ]

| Ql,m(k, t, \tau )| | r\prime (\tau )| max
0\leq i\leq 2n - 1

2n - 1\sum 
j=0

\bigm| \bigm| \bigm| R(n)
| i - j| 

\bigm| \bigm| \bigm| ,
max

0\leq i\leq 2n - 1

2n - 1\sum 
j=0

\pi 

n
| Pl,m(k, ti, tj)| | r\prime (tj)| \leq 2\pi max

t,\tau \in [0,2\pi ]
| Pl,m(k, t, \tau )| | r\prime (\tau )| .(5.13)

Using the estimate (see [21, p. 209]) max
t\in [0,2\pi ]

\sum 2n - 1
j=0 | R(n)

j (t)| \leq 
\surd 
2\pi 2, we obtain

(5.14) max
0\leq i\leq 2n - 1

2n - 1\sum 
j=0

| R(n)
| i - j| | \leq 

\surd 
2\pi 2.

Finally, using (5.10)--(5.14), we see that \| An(k)\| Wn\rightarrow Wn
\leq c(k), where c(k) is the

continuous function on \BbbL of the form

c(k) = 4 max
i,j=1,2

\biggl( \surd 
2\pi 2 max

t,\tau \in [0,2\pi ]
| Qi,j(k, t, \tau )| | r\prime (\tau )| +2\pi max

t,\tau \in [0,2\pi ]
| Pi,j(k, t, \tau )| | r\prime (\tau )| 

\biggr) 
+ 1.
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Thus we see that condition (b3) holds true.
(b4) The sequence \{ An(k)\} n\in \BbbN approximates A(k) for every k \in \BbbL . Let us prove

this statement. To simplify the notation, we do not always indicate the dependence of
the operators on the parameter k. We introduce the operator B(n) : Wn \rightarrow W , using
the right-hand sides of (5.2) and (5.3), namely,

(5.15) B(n)wn =

\Biggl[ 
B

(n)
1,1 B

(n)
1,2

B
(n)
2,1 B

(n)
2,2

\Biggr] \biggl[ 
un

vn

\biggr] 
,

B
(n)
l,mwm,n =

2n - 1\sum 
j=0

\Bigl( 
R

(n)
j (t)Ql,m(t, tj) +

\pi 

n
Pl,m(t, tj)

\Bigr) 
| r\prime (tj)| wm,n(tj),

where t \in [0, 2\pi ]; l,m = 1, 2; w1,n = un, w2,n = vn. It follows from (5.4), (5.5),
and (5.15) that Anpnw = pnw  - pnB

(n)pnw for all w \in W . Therefore,

(5.16) Anpnw  - pnAw = pnw  - pnB
(n)pnw  - pnw + pnBw = pnBw  - pnB

(n)pnw

and

(5.17) \| Anpnw  - pnAw\| Wn
\leq \| pn\| W\rightarrow Wn

\bigm\| \bigm\| \bigm\| Bw  - B(n)pnw
\bigm\| \bigm\| \bigm\| 
W
.

Using [21, Theorems 12.8, 12.13, pp. 202--209], for l,m = 1, 2 and u \in C2\pi , we obtain

max
t\in [0,2\pi ]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 2\pi 

0

Pl,m(t, \tau )| r\prime (\tau )| u(\tau )d\tau  - 
2n - 1\sum 
j=0

\pi 

n
Pl,m(t, tj)| r\prime (tj)| u(tj)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0, n \rightarrow \infty ,

max
t\in [0,2\pi ]

\bigm| \bigm| \bigm| \bigm| \int 2\pi 

0

ln

\biggl( 
4sin2

t - \tau 

2

\biggr) 
Ql,m(t, \tau )| r\prime (\tau )| u(\tau )d\tau 

 - 
2n - 1\sum 
j=0

R
(n)
j (t)Ql,m(t, tj)| r\prime (tj)| u(tj)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0, n \rightarrow \infty .

Therefore,

(5.18)
\bigm\| \bigm\| \bigm\| Bw  - B(n)pnw

\bigm\| \bigm\| \bigm\| 
W

\rightarrow 0, n \rightarrow \infty .

Finally, combining (5.17), (5.18), and (5.7), we see that condition (b4) is true,

\| Anpnw  - pnAw\| Wn
\rightarrow 0 (n \in \BbbN ) for each w \in W.

(b5) The sequence \{ An(k)\} n\in \BbbN is regular for every k \in \BbbL . Indeed, if we as-
sume that the sequence of vectors \{ Anwn\} n\in \BbbN is discretely compact, then, by def-
inition, for any subset \BbbN \prime of the set of \BbbN there exists \BbbN \prime \prime \subseteq \BbbN \prime such that the se-
quence \{ Anwn = wn  - Bnwn\} n\in \BbbN \prime \prime discretely converges to a function f \in W . Using
[21, Theorems 12.8, 12.13, pp. 202--209], and arguing as in the proof of statement
(b4), we see that the operators B(n)pn : W \rightarrow W are collectively compact. Denote by
w(n) the piecewise linear interpolation polynomial for wn, so that

(5.19) wn = pnw
(n).
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Therefore, \| wn\| Wn
=
\bigm\| \bigm\| w(n)

\bigm\| \bigm\| 
W
. Hence, \| wn\| Wn

\leq 1 (n \in \BbbN ) implies
\bigm\| \bigm\| w(n)

\bigm\| \bigm\| 
W

\leq 1

for n \in \BbbN \prime \prime . Whence (see, e.g., [21, p. 7]) the sequence \{ B(n)pnw
(n)\} n\in \BbbN \prime \prime contains a

convergent subsequence \{ B(n)pnw
(n)\} n\in \BbbN \prime \prime \prime , \BbbN \prime \prime \prime \subseteq \BbbN \prime \prime ,

(5.20)
\bigm\| \bigm\| \bigm\| B(n)pnw

(n)  - g
\bigm\| \bigm\| \bigm\| 
W

\rightarrow 0 (n \in \BbbN \prime \prime \prime ) g \in W.

It follows from (5.19) and (5.15) that Bnwn = pnB
(n)pnw

(n). Therefore, the following
inequality is true:
(5.21)

\| Bnwn  - png\| Wn
=
\bigm\| \bigm\| \bigm\| pnB(n)pnw

(n)  - png
\bigm\| \bigm\| \bigm\| 
Wn

\leq \| pn\| W\rightarrow Wn
\| B(n)pnw

(n)  - g\| W .

Thus, combining (5.21) with (5.20) and (5.7), we finally get \| Bnwn  - png\| Wn
\rightarrow 0

(n \in \BbbN \prime \prime \prime ), where g \in W , this means that the sequence \{ Bnwn\} n\in \BbbN \prime \prime \prime discretely
converges to g \in W . Consequently, the sequence \{ wn\} n\in \BbbN \prime \prime \prime discretely converges
to w = f + g \in W , and condition (b5) is valid.

The operator pn is linear. Therefore, the next theorem follows from [17, Theorem
2 and Remark 1, pp. 394--395].

Theorem 5.2. Assume that \gamma \in \BbbR is given, k0 is an eigenvalue of A(k), and
L0 \subset \BbbL is a compact set with the boundary \Gamma 0 \subset \rho (A) so that L0\cap \sigma (A) = \{ k0\} . Let us
denote by \varepsilon n the maximum of the approximation error over k \in \Gamma 0 and w \in G(A, k0),

(5.22) \varepsilon n = sup\{ \| An(k)pnw  - pnA(k)w\| Wn
: k \in \Gamma 0, w \in G(A, k0), \| w\| W = 1\} .

Here, G(A, k0) is the generalized eigenspace, i.e., the closed linear hull of all the
generalized eigenfunctions of A(k) corresponding to k0. Then \varepsilon n \rightarrow 0 (n \in \BbbN ) and the
following estimations hold for almost all n \in \BbbN :
(i) | kn  - k0| \leq c\varepsilon 

1/\kappa 
n for all kn \in \sigma (An) \cap L0, where \kappa = \kappa (k0, A) is the order of the

pole k0 of the operator-valued function A - 1(k);
(ii) | \=kn  - k0| \leq c\varepsilon n, where \=kn is the weighted (proportionally to their algebraic multi-

plicities) mean of all the eigenvalues of An(k) in L0, \=kn =
\sum 

k\in \sigma (An)\cap L0
\mu k \cdot k,

\mu k = \nu (k,An)/\nu (k,A), where \nu (\cdot , \cdot ) is the algebraic multiplicity of the corre-
sponding eigenvalue k;

(iii) max\{ | kn  - k0| : kn \in \sigma (An) \cap L0\} \leq c\varepsilon 
1/ln
n , where ln is the number of different

eigenvalues of An(k) in L0.

6. Numerical results. In this section, we present numerical results only for
LEP. The special case of the problem where k is real and positive is the most important
in laser physics. In numerical examples presented further, we solve the discretized
nonlinear eigenvalue problem using the residual inverse iteration algorithm (see [33]
for its detailed description, which includes a method for calculating appropriate initial
guess values). In all our computations, we assume that k, \gamma > 0 and the microcavity
material has the refractive index \alpha i = 2.63 (this is the effective index for a GaAs slab
of 200 nm thickness in the infrared range) while the environment is air with \alpha e = 1,
and hence ke = k. We consider only the H-polarized modes because in thin cavities
their effective refractive index is lower than for the E-polarized modes [30].

For uniformly active microcavity shaped as a square with the side 2a, we use
a smooth approximation of \Gamma with the aid of the ``supercircle"" characterized by the
parametric equation

(6.1) r(t) = af(t) (cos t, sin t) , f(t) =
\Bigl( 
(cos t)

2p
+ (sin t)

2p
\Bigr)  - 1

2p

, t \in [0, 2\pi ],
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with parameter p = 1 corresponding to the circle and p \rightarrow \infty to the square. Fol-
lowing [3], [4], we compute the function a/| r\prime \prime (\pi /4)| of the parameter p since its
value should be at least 5--10 times less than 2\pi /(\kappa \alpha i), where \kappa = ka. We see that
for \kappa \approx [1, 10] it is enough to choose p = 10. In all our computations we use this value
of p. As we have found, taking p larger (i.e., making the corners sharper) results in
the change of LEP eigenvalues in the 4th digit.

Observing the left-hand panels in Figures 2 and 3, we see that our algorithm con-
verges exponentially in terms of the relative error \varepsilon r = \| (\kappa n, \gamma n) - (\~\kappa , \~\gamma )\| 2/\| (\~\kappa , \~\gamma )\| 2.
Here, (\kappa n, \gamma n) are approximate values computed for different p and different order n of
the interpolation polynomials. By (\~\kappa , \~\gamma ), we denote the approximate values computed
for maximum possible order n of the interpolation polynomials or exact solutions for
the circular microcavity. We see also that the method converges faster for smaller p.

Figure 4 shows all the normalized frequencies of lasing and all the threshold gains
for the active square microcavity for \kappa \in [0, 10] (we use notations of [35]).

Fig. 2. Accuracy of calculations for the (4, 3, o) mode of the microcavity shaped as the ``su-
percircle"" (the left-hand panel) and for the (4, 4, ooo) mode of the triangle approximation of the
microcavity (the right-hand panel).

Fig. 3. Accuracy of calculations for the active square microcavity (the left-hand panel, p = 10)
and for the triangle microcavity (the right-hand panel, K = 5).

Figure 5 shows the near-field patterns of the H-polarized modes of the square mi-
crocavity. The numerical results shown in Figure 5 agree well with the corresponding
results presented in [44] and obtained by the FDTD method and Pad\'e approximation.
We find that the qualitative properties of the lasing frequencies and the corresponding
fields of the modes (6,6,oooo), (6,6,eeoo), and (8,8,oooo) are in good agreement with
characteristics of the modes (5, 1), (6, 10), (7, 9) presented in [44], respectively. We
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κ = ka, normalized frequency of lasing
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Fig. 4. Normalized frequencies of lasing and threshold gains for the active square microcavity.

find also that the maxima of intensity spectrum calculated in [44] correspond to the
gains presented in Figure 5.

Fig. 5. Modal fields, normalized frequencies of lasing and threshold gains for the active square
microcavity.

For microcavity shaped as an equilateral triangle with the side a, we use a smooth
approximation of \Gamma characterized by the parametric equation

(6.2) r(t) =
a
\surd 
3

4

\Biggl( 
cos t - 

K\sum 
k=1

\alpha k cos ((3k  - 1)t) , sin t+

K\sum 
k=1

\alpha k sin ((3k  - 1)t)

\Biggr) 
,

where t \in [0, 2\pi ], \alpha k =
\prod k

j=1 (5 - 3j)/
\bigl( 
3k(3k  - 1)k!

\bigr) 
. Similarly to [3], [4], we compute

the function a/| r\prime \prime (\pi /3)| of the parameter K since, as it was mentioned above, its
value should be at least 5--10 times less than 2\pi /(\kappa \alpha e), where \kappa = ka. We find that
for \kappa \approx [1, 20] it is enough to choose K \geq 3. In all our computations we use K = 5.
Observing Figures 2 and 3 (the right-hand panels), we see that the proposed algorithm
converges exponentially, but more slowly than for the square microcavity.
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Figure 6 shows the normalized frequencies of lasing and the threshold gains for
the triangle microcavity (we use notations [35]).

Fig. 6. Normalized frequencies of lasing and threshold gains for the H-polarized modes of
triangle microcavity.

Fig. 7. Modal fields of the triangle microcavity.

Figure 7 shows the near-field patterns of the H-polarized modes of the equilateral
triangle microcavity. We have compared them with the results of [12] obtained by the
FDTD method and Pad\'e approximation for the H-polarized modes in an equilateral
triangle optical resonator. We have found that the qualitative properties of the fields
are in good agreement.

7. Conclusions. In this paper, we propose and investigate a parametric eigen-
value problem for the Helmholtz equation on the plane based on two physical mod-
els of emission from 2-D microcavities: the Complex-Frequency Eigenvalue Problem
(CFEP) and the Lasing Eigenvalue Problem (LEP). We call our problem the general-
ized CFEP (GCFEP). It contains both LEP and CFEP as special cases. Its complex
eigenvalues k belonging to the Riemann surface \BbbL of the function ln k are the possible
values of the free-space wavenumber. The corresponding eigenfunctions satisfy the
Reichardt radiation condition. The eigenvalues of GCFEP continuously depend on
the real-valued loss/gain index, \gamma \in \BbbR . If \gamma \leq 0, that means an open cavity is passive
(either lossy or lossless), then the statement of GCFEP corresponds exactly to CFEP.
In this case, all the eigenvalues k are located strictly on the lower half of the principal
sheet of \BbbL , i.e., Im k < 0. If, however, \gamma > 0, that is for an active open cavity filled
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with gain material, then the eigenvalues k are allowed to be located at the real axis
of the principal sheet and on its upper half, Im k \geq 0.

As mentioned, the GCFEP eigenfunctions obey the Reichardt radiation condition
at infinity in 2-D. If Im k = 0, then this condition is equivalent to the Sommerfeld
radiation condition. Hence, if for a positive \gamma there exists a purely real eigenvalue k,
then the pair (k, \gamma ) and the corresponding eigenfunction satisfy all the conditions of
LEP. Such a value of \gamma is the threshold value of the gain index of the material, which
fills in the open cavity; it is different for different k.

We reduce GCFEP to a nonlinear eigenvalue problem for the set of M\"uller bound-
ary integral equations (BIEs) with weakly singular kernels and formulate it as a para-
metric eigenvalue problem for a holomorphic Fredholm operator-valued function A(k).
For each real value of the parameter \gamma the resolvent set of the operator-valued func-
tion A(k) is not empty, its spectrum can only be a set of isolated points on \BbbL , which
are the eigenvalues of A(k) of finite algebraic multiplicities. For \gamma \leq 0, this statement
corresponds exactly to CFEP. Each eigenvalue k of the operator-valued function A(k)
depends continuously on \gamma \in \BbbR . If for some \gamma > 0 the intersection of the spectrum
of A(k) and the positive real semiaxis of the main sheet of \BbbL is not empty, then it
can be only a set of isolated points k > 0, which are the eigenvalues of A(k) of finite
algebraic multiplicities. This proposition describes the spectrum of LEP.

To solve the obtained parametric nonlinear eigenvalue problem for the set of
M\"uller BIEs numerically we propose the Nystr\"om method and prove the conver-
gence of the numerical scheme. Namely, for any given \gamma \in \BbbR , we build a sequence
of finite-dimensional holomorphic operator-valued functions An(k) that regularly ap-
proximates A(k). For every eigenvalue k0 of A(k), there exists a sequence of the ei-
genvalues kn of An(k) converging to k0. If \{ kn\} n\in \BbbN and \{ wn\} n\in \BbbN are some sequences
of eigenvalues and normalized eigenfunctions of A(k) so that \{ kn\} n\in \BbbN converges to
a point k0 in \BbbL , then k0 is an eigenvalue of A(k), \{ wn\} n\in \BbbN is a discretely compact
sequence and its cluster points are normalized eigenfunctions of A(k0). The esti-
mates of the speed of convergence of \{ kn\} n\in \BbbN to k0 depend either on the order of the
pole k0 of the operator-valued function A - 1(k), or on the algebraic multiplicities of
all the eigenvalues of An(k) in a neighborhood of k0, or on the number of the different
eigenvalues of An(k) in this neighborhood. In each case, the order of convergence
with respect to the maximum of the approximation error is equal to or less than one.
However, our numerical experiments demonstrate the exponential convergence of the
algorithm with respect to the order of the interpolation polynomial.

The approximate solutions coincide well with known exact solutions of LEP and
results obtained using other numerical techniques for CFEP. We illustrate our findings
with numerical experiments only for k > 0 and \gamma > 0 since LEP is relatively new
and less studied. In forthcoming works, we plan, using the results of the present
paper, to mathematically investigate LEP for the cavities having partial active regions
and partial lossy regions. A theoretically grounded interpretation on the exponential
convergence result supporting the numerical experiments could also be interesting.
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