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We consider infrared (IR)-range diffraction radiation
(DR) from finite configurations of circular graphene-
covered dielectric nanowires excited by the density-
modulated beam of charged particles. The beam
velocity is assumed constant, and its field in
the free space is considered as the incident
one. The characterization of graphene employs
the quantum-theory Kubo formalism and the
resistive-sheet boundary conditions involving the
frequency-dependent graphene surface impedance.
To transform the problem into a well-conditioned
algebraic equation for the field expansion coefficients,
we use the separation of variables in the local
coordinates and the addition theorem for the
cylindrical functions. This leads to explicit inversion
of the single-wire part of the problem, i.e. to the
regularization, provides easy control of the accuracy
and enables us to study fine resonance effects
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associated with the natural modes of the wire collections as open resonators.
This article is part of the theme issue ‘Analytically grounded full-wave methods for

advances in computational electromagnetics’.

1. Introduction
Among the various types of radiation, linked to charged particles moving along straight-line
trajectories, one may encounter Cherenkov radiation, transition radiation, diffraction radiation
(DR) and Smith–Purcell radiation. Cherenkov radiation arises if a charged particle moves faster
than the phase velocity of light in unbounded dielectric medium. Transition radiation results
from a charged particle crossing a boundary between domains with different permittivities. In
contrast, DR corresponds to the emission of electromagnetic waves if charged particles pass
near dielectric or metal obstacles without penetrating or touching them [1–6].

Smith–Purcell radiation was predicted and then found for charged particles travelling near
periodic structures [1,2]. Hence, this radiation can be identified as a special case of DR.

One of the key areas of practical use of DR is the non-invasive control of particle beams
in accelerators and colliders using beam position monitors (BPMs) [7,8]. Today, this mature
technology develops towards microscale and nanoscale devices and electromagnetic wave
emission in the terahertz (THz) to ultraviolet ranges, using the resonances of high-refractive-
index scatterers. Consequently, modelling of DR-based nano-optical BPMs is a timely and
promising research subject.

An emerging and prospective strategy for the next generation of compact particle accelera-
tors involves periodic dielectric gratings driven by a laser. Dielectric laser accelerators (DLAs)
produce accelerating gradients two orders of magnitude higher than traditional microwave
ones, achieved due to use of various gratings of several hundred circular silicon nanowires
[9,10]. Clearly, the electron beams in DLAs emit short-wave DR, accompanied with various
resonance phenomena. This makes electromagnetic analysis of DR effects on such gratings
interesting and important.

Note that, there is an alternative to the natural modes of high-refractive index elements:
plasmon modes supported by graphene-covered low-index scatterers. Recently, graphene has
garnered significant attention due to its remarkable properties, such as charge carrier high
mobility, controlled by DC bias [11,12]. Research efforts are presently concentrated on assess-
ing the characteristics of graphene patterned into discs, tubes, strips and gratings [12–16]. A
graphene sheet is capable of supporting a plasmon wave [11,14]. On patterned graphene, this
wave reflects from the sample edges and forms standing waves, referred to as plasmon natural
modes. Their frequencies depend on the sample size and are located in the THz and infrared
(IR) ranges, respectively, for micro- and nano-sized graphene cavities.

In this work, we analyse the DR effect associated with the two-dimensional models of the
THz/IR-range BPM built on two identical circular graphene-covered dielectric nanowires and
the DLA section built as a finite array of them. Note that, such nanowires can be readily
fabricated [17]. As usual in DR studies, we treat these problems as the classical wave-scattering
problems, supplemented with the quantum-theory description of the graphene conductivity,
where the incident wave is the free-space field of the harmonically modulated electron beam.

Although the scattering of waves from a collection of circular cylinders has been studied
since the 1950s [18], reducing it to a numerical code that has a mathematically guaranteed
accuracy is still neglected. Inspection of the preceding publications shows that the bulk of them
ignore the divergence of the resulting discretized solutions [18–24]. Here, we explain how this
defect can be fixed with the aid of the analytical inversion of the single-wire scattering. The
trusted numerical results demonstrate various fine resonance phenomena.
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This work builds up on the conference papers [25–27], which have been considerably
deepened and extended.

2. DR problem formulation
Consider a flat zero-thickness electron beam, which moves parallel to the x-axis at dis-
tance h from the plate, with fixed velocity v = βc (β < 1). Assume that the charge density
is time-harmonically modulated with the cyclic frequency ω and hence has the form,ρ = ρ0δ(y − ℎ)eikx/βe−iωt, where δ ( ⋅ ) is the Dirac delta function, ρ0 is the amplitude of modulation,k = ω/c is the free-space wavenumber and c is the light velocity.

As usual in the DR studies, we assume that the electron beam velocity and trajectory remain
fixed, this is known as the given-current approximation. In this scenario, the incident wave is the
field of the sheet current, i.e. it has the form of a slow inhomogeneous plane wave [6], the only
component of the magnetic field of which is

(1.1)Hz0 x, y = Aβsign y − ℎ e−q|y − ℎ|eikx/β,
where q = kγ/β, γ = (1 − β2)

1/2
, sign( ⋅ ) = ± 1, the time dependence e−iωt is omitted and A = ρ0c/2

in SI units.
This is a surface wave sticking to the beam trajectory and decaying exponentially in the

normal direction. It propagates with the same phase velocity as the beam particles. Note that,
the field equation (1.1) is an antisymmetric function of the coordinate y and has a finite jump
across the beam trajectory corresponding to the beam current. Note also that, equation (1.1) can
be viewed as a Fourier transform of the field of the single charged wire-like particle [2].

Thus, we are interested in the problem of the field equation (1.1) scattering from M identical
circular dielectric wires with radius a, located in the free space as shown in figure 1, with their
centres of cross-sections at (xp, yp). Let us denote the internal domain of the pth wire as region
{1 .p}, and the domain, external to all wires as region {2}. Here, the wires located under the beam
trajectory are numbered as p = 1, …, M1, in addition, those located above the beam trajectory are
numbered as p = M1+1, …, M.

We introduce Cartesian and polar coordinates: global one with the origin at the first wire
axis, r = (x, y), that is, x = rcosφ,  y = rsinφ and r = x2 + y2, φ = arctan(x/y), and M local ones
with origins at each wire axis. The relative dielectric constant of the nanowires is denoted asε = ε′ + iε″, and all materials are non-magnetic. Then the refractive index of the wire material isα = ε.

Now the DR field problem can be viewed as a classical wave-scattering boundary value
problem, where the incident field is the function (1.1). Such a problem consists of the Helm-
holtz equation with wavenumber kα in every {1 .p}, p = 1, ...,M, or k in {2}, the graphene-layer
boundary conditions at the wire contours, i.e. at rp = a, 0 ≤ φp < 2π, p = 1, ...M, the Sommerfeld
radiation condition at infinity, and last but not least, the condition of the local power finiteness.
That is, the graphene-layer boundary conditions are the two equations,

(1.2)Eφpint p − Eφp0 − Eφpext = 0, Eφpint p + Eφp0 + Eφpext = 2ZZ0 Hint p − H0 − Hext ,

where Eφp0 , Eφpint(p) and Eφpext are the incident, internal and external electric field φ-component,
respectively, at the pth wire contour (similar notation hold for the magnetic field, H = Hz),Z0 = μ0/ε0 is the free space impedance and Z is graphene surface impedance (explained
further), normalized by Z0. Note that, these boundary conditions are two-side as they involve
the limit values of the tangential field components from inside and outside of the contour. If Z =
0, they turn into the conventional PEC condition.

As known, the aforementioned set of conditions guarantees the solution uniqueness for all
real-valued k, only if ε″ ≥ 0, that is, if the wires are passive or lossy.
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3. Analytical regularization based on single-wire part inversion
To reduce the DR problem to a well-conditioned algebraic equation, we represent the total
magnetic field as follows (here and further, the index z is omitted):

(1.3)
Htot r,φ = Hint(p) r,φ ,    r,φ ∈ 1.p ,  p = 1...M,H0 r,φ + Hext r,φ ,   r,φ ∈ 2 ,  

and expand it in terms of the Fourier series of the azimuth harmonics, with bounded coeffi-
cients, inside each of domains {1 .p} and as a superposition of M similar to outgoing expansions
in domain {2}, respectively,

(1.4)Hint p r,φ = ∑n = − ∞

∞ ynp Jn kαrp einφp,   rp,φp ∈ 1.p ,

(1.5)

H0(rp,φp)

= Aβeikxp/β ∑n = − ∞

∞ inβ−n −eq(yp − ℎ)(1 − γ)n, p = 1, …,M1e−q(yp − ℎ)(1 − γ)n, p = M1 + 1, …,M Jn(krp)einφp, (rp,φp) ∈ {2},

(1.6)Hext r,φ = ∑q = 1

M
∑n = − ∞

∞ xnq w̃nHn1 krq einφq,    r,φ ∈ 2 ,

where xn(p), yn(p) are unknown coefficients, Hn(1)( ⋅ ) and Jn( ⋅ ) are the first-kind Hankel and Bessel
functions, respectively, and wn is a certain weight specified further to obtain well-conditioned
matrix equation.

Note that, equation (1.5) is derived from equation (1.1) using the Anger formula (see [5]),
and the series of equations (1.4)–(1.6) satisfy the Helmholtz equations, the condition of the
local power finiteness and the radiation condition, respectively. To determine the unknown

Figure 1. Cross-section of zero-thickness electron beam moving through M identical circular wires.
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expansion coefficients, these series are substituted into the boundary conditions equation (1.2)
at the contours of the wires. For the term Hn(1)(krq)einϕq with q ≠ p, arising from equation (1.6),
Graf’s addition theorem is applied as in [27, equation (3)].

Further, we perform analytical inversion of the single-wire parts of each of M blocks of the
obtained equation. This is done by multiplying the mth equation with exp( − im′φ), integrating
it in φ from zero to 2π, and using the orthogonality of exponents. After the exclusion of
coefficients yn(p), we obtain a block type (M × M) infinite-matrix equation for the remaining
coefficients. Omitting the superscript of the Hankel function and using the prime to mark the
differentiation in argument, we get

(1.7)

xmp + Vmw̃mDm ∑j = 1j ≠ p
M
∑n = − ∞

+∞ w̃nxnj Hm − n kLpj ei n −m ψpj = Fmpw̃mDm ,

where

(1.8)Vm = iZ−1Jm′ ka Jm′ kαa + αJm′ ka Jm kαa − Jm ka Jm′ kαa ,

(1.9)Dm = iZ−1Hm′ ka Jm′ kαa + αHm′ ka Jm kαa − Hm ka Jm′ kαa ,

(1.10)Fmp = − iZ−1fm′ p Jm′ kαa − fm′ p αJm kαa + fmp Jm′ kαa ,

where the incident field caused quantities are

(1.11)
fm(p) = fm(p)(ka) = Aeikxp/βimJm(ka)β1 −m −eq(yp − ℎ), p = 1, …,M1,e−q(yp − ℎ), p = M1 + 1, …,M .

Note that, if there is a single wire, M = 1, then the summations in equation (1.7) vanish, and
this equation turns into an explicit expression for the unknowns, xm(p) = Fm(p)Dm−1w m−1, as expected
due to the single-wire part inversion. Now, if the weight coefficients are taken as large-index
asymptotics of the Bessel functions Jn(ka), i.e. as [28], then

(1.12)w̃n ≥ 0 = ka/2 n/n!,  w̃n < 0 = −1 nw̃n > 0,

and the obtained infinite-matrix equation (1.7) is of the Fredholm second kind in the space of
number sequences l2M, provided that for all p and j, Lpj > 2a, i.e. the wire contours do not touch
one another (see appendix).

Here, it should be noted that, the algebraic equations, similar to equation (1.7); however,
without the weight equation (1.12), were first time derived for the plane-wave scattering in
[18] and then reproduced in many other publications, e.g. [19–23], including a recent tutorial
[24]. Such equations, unfortunately, do not amend truncation because their matrix elements
decay exponentially with one index, they grow, however, exponentially with the other index.
This defect can be fixed by introducing the weight, Jn(ka), as found in [29–31]. Still, such a
weight brings additional singularities into the matrix elements, at the real-valued zeros of the
Bessel functions. In computations, these singularities are usually not felt because the cylindrical
functions are easily computed with machine precision; however, the choice of the weight as
equation (1.12) eliminates that defect entirely.

4. Plasmon mode characterization via the Kubo formalism
The most widely adopted model of the electron mobility in the graphene monolayer is the
Kubo formalism [11]. Here, the graphene thickness is considered zero, and the hexagonal fine
structure of graphene is neglected. Under these assumptions, which are justified up to the X-ray
frequencies, graphene’s surface conductivity, σ(ω, μc, τ,T) depends on the cyclic frequency ω,
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chemical potential μc, electron relaxation time τ and temperature T. Its value consists of two
contributions, σ = σintra + σinter, which are the intraband and interband conductivities. That is,

(1.13)σintra = − iΩZ0ω + iτ−1 , Ω =
qe2kBT
πℏ2Z0

μckBT + 2ln 1 + exp −
μckBT ,

where Z0 = μ0/ε0 is the impedance of the free space, and σinter is expressed as an integral of
known functions (see [11]). The normalized surface impedance (or resistivity) of graphene isZ(ω) = Z0

−1 σintra + σinter
−1.

The relative contribution of the two terms in Z depends on the frequency and chemical
potential [11,32,33], so that at μc = 1 eV, σinter is less than 0.001 of σintra, in absolute value,
if the frequency is below 60 THz. This allows us to derive approximate expressions for the
characteristics of the transversal plasmon natural modes on graphene-coated wire [32,33]. Their
complex wavenumbers are the roots of the transcendental equations, Dm(k,a, ε,Ω) = 0, m =
0,1,2,.. which are located in the quasi-static domain, where ka < < 1. That is, the real parts
of their frequencies, fmP = kmP c/2π and the Q-factors are approximately found as follows (m =
1,2,3,…):

(1.14)fmP ≈ 1
2π

mcΩa ε + 1
1/2

,   QmP ≈ 4ετ
1 + ε 3/2

mcΩa 1/2
.

Note that, in addition to the plasmon modes, there is another class of zeros of the same Dm—
these are the modes of the circular dielectric wire, perturbed by the presence of graphene cover
[32]. The frequencies of these modes, however, are located in the higher frequency domain
starting from, approximately, c/4a ε.
5. Nanowire dimer, beam between wires
Using equations (1.7)–(1.12), we analyse the DR effect for a dimer of circular dielectric nano-
wires wrapped in graphene with the electron beam moving between the wires, so that M1 = 1,
M = 2 and x1, 2 = 0, y1, 2 = a ± s/2.

In figure 2b, we demonstrate the computational error, by the l2-norm (see appendix for the
error definition), of the numerical solution of equation (1.7) as a function of the block truncation
order, N. As one can see, although the nanowires are strongly coupled as 2 a/L = 0.909, the
error goes down exponentially all the way to machine precision, reached with N less than 30. A
reasonable accuracy of four digits is achieved with 15 coefficients in the local Fourier series (n
= 7), although this value increases if the beam velocity β gets smaller—because of the less quick
decrement of the right-hand part elements of equation (1.7). For comparison, the error without
the weight equation (1.12) demonstrates catastrophic behaviour at larger N.

Figure 3 presents the normalized partial scattering and absorption cross-sections (SCS and
ACS, see [33]) versus the frequency for the wires with a = 50 nm, s = 10 nm, beam velocity β =
0.5; graphene parameters are T = 300 K, τ = 1 ps, chemical potential μc = 0.5 eV (a) and 10 eV
(b). These plots prove that the considered configuration can serve, under certain conditions, as a
model of the nanosize BPM [33].

Indeed, one can see that the DR-induced radiated and absorbed powers demonstrate
resonance behaviour. As explained in [33], these resonances are caused by the excitation of the
natural modes of the dimer as an open resonator. Because of twofold symmetry, these modes
are ‘supermodes’ in the sense explained in [33,34].

As seen in panel (a), the plots for μc = 0.5 eV do not demonstrate any effect of the shift of the
beam trajectory. The curves for h = 0 and h = 4 nm overlap and reveal only the resonances on
the y-odd plasmon supermodes, P1, 2

EOand P1, 2
OO, which stay unresolved because of low Q-factors

[33,34].
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(a) (b)

Figure 2. Cross-section of two graphene-covered dielectric wires and electron beam moving between them (a) and the
computational error as a function of the matrix block truncation number, N (b).

(a)

(b)

Figure 3. Normalized partial SCS and ACS versus the frequency for nanowire dimer excited by the electron beam moving
between wires. Wire radius is a = 50 nm, air gap width is s = 10 nm, chemical potential is μc = 0.5 eV (a) and 10 eV (b), and
beam shift is h = 0 and 4 nm. Vertical dotted lines correspond to equation (1.16).
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According to equation (1.14), to enhance the Q-factors, either a larger chemical potential or a
smaller wire radius is needed. Indeed, if μc = 10 eV, then the SCS and ACS plots for the shifted
beam demonstrate new high-Q resonances, which are not present if the beam passes through
the midpoint of the air gap. New peaks correspond to the unresolved supermodes P1, 2, 3

EE  andP1, 2, 3
OE  with the fields, orthogonal to the beam field equation (1.2) at h = 0.

As expected, the y-even and y-odd supermode frequencies are shifted in opposite manner
from the single-wire frequency equation (1.14), indicated by the vertical dotted lines. This is
exactly the effect, which is needed for the beam monitoring (first reported in [33]). Here, we
note that, its counterpart exists in the visible-light DR originating from beam-excited high-per-
mittivity dielectric nanowire dimers and silver nanotube dimers [35,36].

Figure 4 presents the nearfield patterns computed in the plasmon resonances for the beam,
shifted by h = 4 m. They show the features, which agree with interpretation presented above.

6. Finite nanowire array, beam over wires
In this section, we study DR effect for the configuration shown in figure 5. This is a finite-peri-
odic array made of M identical graphene-covered circular dielectric wires. It is excited by the
modulated electron beam field equation (1.1).

In figure 5b, we plot the computational error, by the l2-norm (see appendix A), of the
numerical solution of equation (1.7) as a function of the block truncation order, N, for the array
of M = 100 nanowires of radius a = 10 nm and period L = 2 μm. As in the previous case, the
error goes down exponentially all the way to machine precision. Still, the accuracy of 3−4 digits
is achieved already with n = 1, i.e. with zeroth and plus or minus first coefficients in the local
Fourier series—this is because here the sub-wavelength wires (a ≈ λ/50) are very far from each
other, 2a/L = 0.001, and their optical interaction is very weak. The machine precision is reached,

(a) (b) (c)

(d) (e) (f)

Figure 4. In-resonance near magnetic field patterns of graphene-covered dielectric nanowire dimer with wire radius a = 50
nm, the chemical potential μc = 10 eV, beam shift h = 0 and 4 nm and air gap of s = 10 nm.
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in this case, with less than 15 Fourier coefficients (n = 7) although this value increases if the
beam velocity β gets smaller. Similar to the previous section, the error for the code without the
weight equation (1.12) displays numerical ‘explosion’ if N exceeds certain value.

(a) (b)

Figure 5. Cross-section of array of M graphene-covered dielectric wires and electron beam moving over them (a) and the
computational error as a function of the matrix block truncation number (b).

(a) (b)

(c) (d)

Figure 6. Normalized DR TSCS versus the frequency for the grating of M = 100 graphene-covered dielectric wires of radii a =
10, 50 and 100 nm and the chemical potential μc = 0.5 eV (a) and 10 eV (b).
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This configuration can serve as a model of the DLA section [9,10,27]. Figure 6 shows the
spectra of per-wire total SCS (TSCS) for the M = 100, array period L = 2 μm and chemical
potential μcc= 0.5 eV (a) and 10 eV (b).

In the depicted frequency range, we can identify the resonances on the plasmon modes
Pm and the lattice modes Lm. Note that, the plasmon-mode resonance displays only one peak,
in contrast to the dimer-mode quartets found in the previous section. This is because here
the wires are so far from each other (2a/L ≤ 0.1) that the supermodes are not resolved. The
lattice-mode resonances are very close (from the red side) to the frequencies of the Rayleigh
anomalies of the corresponding infinite grating of similar wires, given by the equation, , m = 0,
1, 2, … [37–39].

Investigating the influence of the wire radius on the grating modes, we compare the results
for a = 10, 50 and 100 nm. In line with [11], the plasmon-mode frequencies scale as , while the
lattice modes stay fixed.

In figure 7, we present the near magnetic field patterns for the grating of figure 9, in the
resonance on the P1 mode, near the first, the central-left and the last nanowire. The P1 pattern
is better visible in the case of the smallest wire radius, because here the Q-factor of P1 is the
largest.

7. Conclusions
We have presented basic equations and numerical results for the DR of a modulated elec-
tron beam in the presence of a dimer and a finite array of identical circular dielectric

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. The near magnetic field patterns in the P1 plasmon-mode resonances marked in figure 6b, near the first, the 49th
and the 100th wire.
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graphene-covered nanowires. Assuming that the particle velocity and trajectory are fixed, we
have treated this phenomenon as a classical wave-scattering problem, where the properties
of graphene are accounted for with the aid of quantum-theory description of its conductivity.
Using the single-wire part inversion, we have reduced that problem to a Fredholm second
kind matrix equation that guarantees the solution convergence and enables easy control of
computational accuracy.

For the closely spaced nanowire dimer, we have demonstrated the appearance of additional
resonances on the plasmon supermodes of the graphene covers, excited only if the beam is
shifted from the symmetrical trajectory.

For the sparse finite array of nanowires, we have demonstrated the presence of the plasmon-
mode resonances of each wire and the other, collective resonances on the lattice modes, caused
by the periodicity (that can be also understood via the Bragg effect). This analysis can be useful
in the design of BPMs and DLA sections, respectively, made of low-index dielectric wires coated
with graphene.
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Appendix A.
The Fredholm second-kind nature of the matrix equation (1.7) follows from the estimations of
the necessary conditions, that are valid for all p, j = 1, …, M,

(A 1)

∑m,n = − ∞

+∞ w̃nVmw̃mDmHm − n kLpj  2

< const ⋅ ∑m,n = 0

+∞ 2aLpj m + n
,

 ∑m = 0

+∞ Fmpw̃mDm
 2

<  const ⋅ e−q|yp − ℎ| ∑m = 0

+∞ 1m!
ka
2β m

,

which are obtained after replacing the cylindrical functions with the first terms of their power
series representations. ∗ ∗ ∗
The computational error in the solution of the matrix equation (1.7), shown in figures 3b and 6b,
is defined as the difference, in l2-norm, between two adjacent solutions, i.e. computed with each
block truncated by the orders n + 1 and N,

(A 2)error N = ‖x→N + 1 − x→N‖/‖x→N + 1‖ .
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It is interesting to see that the errors in x N with respect to the reference result, x→ref, which is
assumed as the result, computed by our code with the maximum truncation number, n = 65 and
n = 20, respectively, demonstrate very similar dependences on N (see figure 8).
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