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We study the threshold conditions for the natural
modes of the microsize plasmonic laser shaped as
an infinite flat graphene strip grating symmetrically
embedded into the gain-material layer, in the
H-polarization case. For this purpose, we solve
the lasing eigenvalue problem (LEP), which is a
classical source-free electromagnetic field boundary-
value problem, adapted to the presence of the
active region by the corresponding sign of the
imaginary part of the refractive index. In such a
way we look for the eigenpairs, i.e. the stimulated
emission real-valued frequency and the threshold
gain index, specific to each mode. We transform LEP
to a hypersingular integral equation for the on-strip
current density and discretize it by the regularizing
Galerkin technique. This procedure leads to a
determinantal equation with guaranteed convergence
to the exact LEP eigenpairs and controlled accuracy
of their computation. The numerical analysis allows
us to study the threshold conditions for various
lasing modes of the microsize laser, identify them and
trace their change when varying the parameters of
the lasing structure.
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This article is part of the theme issue ‘Analytically grounded full-wave methods for
advances in computational electromagnetics’.

1. Introduction
The advancement of lasers that use plasmonic effects signifies an encouraging direction in
contemporary photonics [1]. A key breakthrough in miniaturizing the lasers was the introduc-
tion of noble metal-based nanoparticles as open cavities that function on the principles of
plasmonics. This has led to the experimental demonstration of the tiniest plasmonic laser, which
is based on colloidal gold nanospheres coated with dye-doped shells [2].

A common method for studying the natural modes of laser cavities used to be the classi-
cal complex-frequency eigenvalue problem based on the theory of source-free time-harmonic
electromagnetic field for a passive open cavity. However, this approach is not entirely sufficient,
as it overlooks the presence of the active region and does not account for the existence of the
gain in this region [3]. As a consequence, the natural-mode frequency, ω (assuming the time
dependence e+jωt, for definiteness), can only be complex with a positive imaginary part that
means the decay of the field in time that is not adequate for the lasing as a stationary field
emission. In contrast, the LEP approach fully takes into account the size, shape and location of
the active region [4–9]. Analysing the natural modes with the aid of this approach, we suppose
that the refractive index of the gain material layer is ν = α + iγ, where α is the known value
and γ > 0 is the unknown material gain provided by the pumping. This modification allows
every natural-mode frequency to obtain a purely real value, thus making its field stationary in
time. It suggests considering the LEP eigenvalues as ordered pairs, (fm, γm), of the mode-specific
real-valued eigenfrequencies, fm , and the corresponding threshold values of material gain in
the active region, γm [10–13], where m refers to the mode index. Importantly, the LEP approach
is fully applicable to the analysis of the threshold conditions of the plasmonic lasers, i.e.
those open-cavity configurations, which contain the noble-metal elements able to support the
localized plasmon natural modes. Such full-wave electromagnetic analysis has been performed
in [5,9] for the modes of silver nanostrip and nanotube, respectively, with circular quantum
wires as active regions.

The appearance of graphene opens new possibilities in plasmonics since graphene mono-
layer is a material capable of guiding the surface plasmon polariton (SPP) natural wave, which
is a wavelike collective oscillation of delocalized electrons, in the infrared- and THz-frequency
ranges [14,15]. By patterning into strips and other shapes, graphene can form open resonators
with the natural modes which are Fabry–Perot standing waves produced by the SPP natural
wave of a graphene monolayer [16,17].

What makes graphene particularly appealing for applications is its conductivity, which can
be dynamically controlled through the application of electrostatic bias. Currently, the most
widely adopted quantum physical model of graphene conductivity is the Kubo model [14,15].
It demonstrates that the conductivity σ (f, μc, τ, T) depends on chemical potential μc, frequency
f, electron relaxation time τ and temperature T. It involves two terms: intraband conductivity
and interband conductivity. In the THz-frequency range, the intraband one yields the dominant
contribution—see appendix A.

The ability to shape graphene into various forms, its excellent electronic, optical and
mechanical properties as well as the dynamic control of its conductivity allows to develop
novel photonic and plasmonic devices particularly in the THz and infrared ranges, including
efficient antennas [18], electronically tuneable phase shifters [19], tuneable frequency selective
surfaces [20] and plasmonic biosensors [21,22].

Patterned graphene shapes, including graphene-covered or graphene-strip-loaded circular
quantum wires [4,23], are being evaluated as plasmonic micro-/nano-lasers. Graphene strip
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grating lasers are also attracting the attention of researchers [24]. In the full-wave electromag-
netic modelling of graphene, the authors follow [14,15] and use two-side boundary conditions
for a zero-thickness resistive surface [25,26].

In this paper, we consider, using the LEP, a microsize one-periodic graphene strip grating
embedded into the gain material layer. In contrast to the noble-metal particle array-based
nanolasers, including the silver strip grating on the gain substrate [27], the tunability of
graphene promises obtaining the dynamically tuneable frequencies and thresholds of stimula-
ted emission. As a numerical tool, we use a regularization technique which is a projection of
the relevant hypersingular integral equation (HSIE) on a set of orthogonal polynomials that are
the eigenfunctions of the singular part of the HSIE operator. This projection has been applied
and validated in the analysis of the time-harmonic wave scattering from the same grating as in
[16,17]. It leads to a well-conditioned determinantal equation for the LEP eigenpairs that entails
mathematically guaranteed convergence of approximate eigenvalues to the exact ones if the
matrix truncation order increases [28,29].

2. Theory
A cross-sectional view of the analysed two-dimensional LEP geometry is illustrated in figure
1. The flat zero-thickness strips are embedded into a gain-material layer with the complex
refractive index ν = α + iγ, where α > 0 is a known value, γ > 0 is unknown threshold gain index,
and the thickness is h. The layer is assumed non-magnetic, thus its complex relative permittivity
is εr = ν2. The grating is located in the middle plane of the layer at x = h/2; its period along the
y-axis is d and the strip width is 2 w. The host medium is free space.

We will consider only the H-polarized time-harmonic electromagnetic field case as it is
more important for applications owing to the existence, in contrast to the E-case, of the surface
plasmon modes on graphene strips.

Thus, the LEP is formulated as a source-free electromagnetic boundary-value problem for
the magnetic field function Hz, which must satisfy

— Two-dimensional Helmholtz equation off the boundaries with coefficients εrk2 in the layer
and k2 out of the layer.

— The resistive-sheet boundary conditions at the periodic sequence of graphene strip
contours,

(2.1)

E→T+ x, y + E→T− x, y = 2 Z ζ0 x→ × H→T+ x, y − H→T− x, y ,

E→T+ x, y = E→T− x, y ,    x = ℎ/2,   | y − qd| < w,   q = 0, ± 1,  ± 2....,

where ζ0 is the free space impedance, Z is the normalized surface impedance of graphene
(see appendix A), ± indicates the limiting values at x → ℎ/2 ± 0, T means tangential, andx  is the unit vector.

— Continuity of the tangential field components across the material boundaries at x = 0 and
x = h,

(2.2)E→T+ x, y = E→T− x, y ,  H→T+ x, y = H→T− x, y .  

— Radiation condition at |x| → ∞ that is consistent with the Principle of Radiation: the field
must behave as the outgoing wave. Mathematically, the field must be expandable in terms
of the Floquet series (2.5), where for every index q, either Reα0q ≥ 0 or Imα0q ≤ 0.
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— Condition of the local power finiteness in any arbitrary domain D including the vicinity
of strip edge,

(2.3)D |ν2E→|2 + Z0
2 |H→|2 dxdy < ∞,

that limits the field behaviour near the strip sharp edges. According to [30], in the
case of the H-polarization, this entails the same edge behaviour of the electric current,J c

(y) = x × H T(ℎ/2 + 0, y) − H T(ℎ/2 − 0, y)  as on the PEC strip, O y2 − w2 1/2  if |y| → w.

These conditions are inherited from the time-harmonic wave scattering problem with real-val-
ued k, where they guarantee the uniqueness of the scattered-field function provided that k is not
the eigenvalue. When studying the threshold conditions for the natural modes of the grating,
equipped with an active region, we look for the real-valued k; therefore, the same conditions are
imposed.

From the grating periodicity and Floquet theorem, it follows that the field is a quasi-periodic
function of y:

(2.4)Hz(x, y + d) = ejβ0dHz(x, y ),

where β0d is the field phase shift on single period (a.k.a. the Rayleigh parameter). Therefore,
this function can be sought in the form of the Floquet–Rayleigh series of space harmonics,

(2.5)Hz x, y = jζ0
 −1 ∑q = − ∞

∞ ρH, qΦH, q x  e−jβqy ,
where ρH, q are unknown Floquet harmonic amplitudes, βq = β0 + 2qπ/d. Note that the Rayleigh
parameter β0 determines the propagation angle, φ: sinφ = β0/k , of the zeroth Floquet harmonic
with respect to the x-axis.

In the lasing threshold analysis, at least with flood pumping, there are no good reasons to
consider that this parameter is non-zero. Therefore, we will further assume β0 = 0, so that the
zeroth harmonic radiates in the normal direction. However, this is not a critical restriction and
arbitrary β0 does not spoil the technique used.

The functions ΦH, q x  satisfy the radiation condition and are expressed via the characteristic
functions,

(2.6)

ΦH, q(x) =

−α1qejα0qx/VH, qe (ℎ/2), x < 0
−VH, qo (x)/VH, qe (ℎ/2), 0 < x < ℎ/2VH, qo (ℎ − x)/VH, qe (ℎ/2), ℎ/2 < x < ℎα1qe−jα0q(x − ℎ)/VH, qe (ℎ/2), ℎ < x

Figure 1. Cross-section of infinite flat graphene strip grating, symmetrically embedded into gain-material layer.
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(2.7)VH, qe x = α1qsin α1qx − jεrα0qcos α1qx ,  VH, qo x = α1qcos α1qx + jεrα0qsin α1qx
with transverse wavenumbers α1q = (εrk2 − βq2)1/2

 inside and α0q = (k2 − βq2)1/2
outside the layer.

Note that the wavenumbers k = ± βq (however, not k = ± βq/ν) are the field (2.5) branch-points;
they are known as the Rayleigh Anomalies (RAs).

The Fourier  transform of  the  surface  current  density,  extended by zero  to  the  slot
domain,  allows us  to  obtain  the  integral  representation of  the  qth  Floquet  harmonic
amplitude,  ρH, q = − ζ0/2d ∫

−w
w YH, q −1Jyc y′ × ejβqy′dy′,  where  YH, q = VH, qo (ℎ/2)/jVH, qe (ℎ/2).  On substitut-

ing this  expression and (2.5)  to  the  resistive  boundary conditions  (2.1),  we obtain
the  integral  equation of  the  second kind for  the  surface  current,  FH(t) = ζ0 Jyc(y′) ejβ0y′

(y = w s, y′ = w t),
(2.8)Z FH s  +

−1

1KH s, t  FH t  dt = 0 

with the kernel function

(2.9)KH s, t = jΔ
2εrkd ∑q = − ∞, even

∞ χH, qΓH, q/2 ejq t − s Δ,  

where Δ = πw/d, χH, q = − jα1 (q/2)d/π if q is even or zero if q is odd, ΓH, q = 1/YH, q.
It is important to emphasize that, in the case of the H-polarization, the kernel function (2.9) is

the expansion of the second derivative of the periodic Green’s function of the two-dimensional
Helmholtz equation in terms of the Floquet harmonics, therefore, it is a hypersingular function
as s → t and (2.8) is an HSIE. This becomes evident on using the asymptotic behaviour ofΓH, q/2 ∼ 1 at q ∞ and transforming (2.9) as follows:

(2.10)KH s, t = j
2εrkdΔ

1t − s 2   +  Δ2 ∑q = − ∞

∞ χ̃H, qejq t − s Δ

(2.11)
χ~H, q = 2∑ν = 1

∞ B~H, νξνq +
χH, 0(YH, 0)−1 + 1

3 , q = 0χH, q(YH, q/2)−1 + |q| q ≠ 0, even,
0, q ≠ 0, odd

(2.12)ξν0 = π2ν/ 2ν + 1  if q = 0 and ξνq = 2ν ! ∑μ = 0

ν − 1
−1 q + μπ2 ν − μ − 1 / 2ν − 2μ − 1 !q2μ + 2 if q ≠ 0.

BH, ν = 22νBν + 1 (2ν)!(ν + 1) −1 and Bν + 1 are the Bernoulli numbers.
As is well known, discretization of such HSIE via the moment-method with the local basis

functions does not lead to stable and convergent numerical code and should be replaced with
more mathematically advanced techniques. Therefore, we discretize (2.8) using the technique
based on the regularizing Galerkin moment method (MAR-Galerkin) [16,17,28,29]. Here, we need
a set of orthogonal eigenfunctions of the extracted hypersingular part of the integral operator
to apply as basis and testing functions in the projection method. This procedure is known
to lead to an infinite matrix-operator equation of the Fredholm second kind. The weighted
Chebyshev polynomials of the second kind form such a set for the canonical hypersingular
operator represented by the first term in (2.10)—see (A 4) in appendix A; they also have the
same behaviour at the strip edge as the unknown current function. Thus, we expand this
function as

(2.13)FH t = 1 − t2∑n = 1

∞ fH,nUn − 1 t .
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Substituting the expansion (2.13) into HSIE (2.8), multiplying both parts of the equation with
1 − s2Um − 1(s), and integrating in s from −1 to 1, we obtain the following infinite-matrix

operator equation:

(2.14)∑n = 1

∞ κH,mn + Zκ̃H,mn  fH,n = 0,   m = 1,  2, . . , ∞ .

Here, the matrix elements are represented by the following expressions:

(2.15)κH,mn =
−1

1

−1

1KH s, t  Um − 1 s  Un − 1 t  1 − s2 1 − t2 ds  dt
(2.16)

κ̃H,mn =
−1

1Um − 1 s Un − 1 s  1 − s2  ds =
1

1 − m − n 2 −
1

1 − m + n 2  m + n:  even

0             m + n:  odd .

Since the weighted Chebyshev polynomials are orthogonal eigenfunctions of the hypersingular
integral operator (see (A 4) and (A 5) in appendix A), the result of integration contains the
Kronecker symbol δmn.

(2.17)κH,mn = π
2jkwεr n2δmn − Δ2

4 χ̃H, 0δm1δn1 −m n jn −m ∑q = − ∞ q ≠ 0

∞ χ̃H, qq2 Jm qΔ  Jn qΔ ,

where Jm(qΔ) is the Bessel function. Then, (2.14) turns to

(2.18)∑n = 1

∞ δmn + AH,mn fH,n = 0, m = 1, 2, 3, ....

(2.19)

AH,mn = 4 j kwεr m π  −1Zκ̃H,mn − Δ2 2m  −1χ̃H, 0δm1δn1

− 2 n jn −m ∑q = − ∞, ≠ 0

∞ q −2χ̃H, qJm qΔ Jn qΔ .

As the estimation ∑n,m = 1

+∞ | AH,mn |2 < ∞ holds true, then (2.18) is the Fredholm second-kind matrix
equation [28,29]. Finally, the search for the LEP eigenvalue pairs (f, γ) reduces to solving the
determinantal equation,

(2.20)det δmn + AH,mn(f, γ) т = 1
∞ = 0,

and the regularized nature of (2.18) ensures the results converge when (2.20) is truncated to a
finite order.

Besides the eigenvalues, the eigenvector of the current expansion coefficients, fH,n, should
also be computed in order to determine the natural mode Floquet harmonic amplitudes, ρН, q,

(2.21)
ρH, q =

−Δ fH, 1 4YH, 0
−1,    q = 0

4qYH, q −1∑n = 1
∞ fH,nnjn + 1Jn 2qΔ ,   q ≠ 0.

Then, we can restore the mode magnetic field pattern according to (2.5).

3. Numerical results
In figure 2a, one can see the computational error in the eigenpair of the first plasmon mode P1
as a function of Ntr for three values of the Qtr/Ntr ratio, where Qtr is the truncation number of
the Floquet–Rayleigh series of space harmonics ( 2.5) and Ntr is the truncation number of the
surface current density series expansion by Chebyshev polynomials of the second kind as the
basis functions in Galerkin’s procedure.
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As follows from figure 2a, our algorithm shows a rapid decrement of the relative trunca-
tion error, Er = δf 2 + δγ 2, where δf = |fNtr − fNtr + 1 | |fNtr + 1 | −1 ,  δγ = |γNtr − γNtr + 1 | |γNtr + 1| −1,
although with oscillations, as the truncation number Ntr increases. Besides, it should be noted
that the convergence rate increases with increasing truncation numbers ratio Qtr/Ntr, as shown
in figure 2a. Figure 2b shows the decay of the relative truncation error for three different
chemical potential values μc and Qtr = 3Ntr. As can be seen, the convergence rate is almost the
same for all considered chemical potentials μc and hence for the surface impedance Z values.
This is a consequence of the fact that the singularity of HSIE and the regularization method do
not depend on Z and coincide with the case of the PEC strip grating. Still, the error itself scales
as |Z|.

To accurately compute the values of frequency and threshold gain, we employ the modified
hybrid Powell algorithm from the IMSL library. This iterative algorithm requires specific initial
guess values to proceed efficiently. To obtain reliable initial guesses, we first build a map of the
determinant absolute value as a function of the frequency f and threshold gain index γ in the
analysed ‘window.’ Such a map displays local minima—see figure 3a, computed with Ntr = 20,
Qtr = 60 for 2w = 20 μm, d = 70 μm, h = 35 μm and α = 1.5. The initial guesses are taken from the
minima where the determinant is close to zero and then refined through iterations.

Notably, some of the eigenpairs in figure 3a lie on a hyperbolic curve, γ = const f −1—see
appendix A. They correspond to the plasmon modes of the graphene strips [4]. Such identifica-
tion is supported by their near magnetic field portraits, which display characteristic bright spots
confined to the graphene strips—see P2 and P3 in figure 3b. These modes are formed due to the
bouncing of the surface plasmon natural wave of graphene monolayer between the strip edges.

Besides the plasmon modes, one can see ultralow-threshold lattice modes labelled as L11
(o . e)

and L21
(o, e). Their near-field patterns, shown in figure 3c, have an even number of bright field

spots on the grating period. These are the modes of the grating-loaded dielectric slab as a
periodic open resonator [10,13,16,17]. The frequencies of the lattice modes are defined primarily
by the period of the grating, i.e. are close to the RAs. However, the red shift from RA is defined
by the propagation constant of one of the guided natural waves of the bare dielectric slab as an
open waveguide that scales with layer refractive index and thickness. Therefore, the first index
of the lattice mode corresponds to the nearest RA, i.e. to the ±1st or the ±2nd one; see the red
dashed line at 4.28 THz. The second index, here 1, corresponds to the index of the TM1 guided
natural wave of the dielectric slab with cutoff frequency fc = 3.8 THz indicated by the red arrow
in figure 3a. The superscripts e and o denote the y-even and y-odd classes of the mode magnetic
field symmetry.

(a) (b)

Figure 2. Computational error in the eigenpair of the plasmon mode P1 as a function of the matrix truncation number for
three values of the Qtr/Ntr (a) and three values of the chemical potential μc (b). τ = 1 ps, T = 300 K.
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Besides, one can see at f = 6.17 THz the high-threshold mode S2 of the active dielectric layer
slightly perturbed by the presence of partially transparent and lossy graphene strips. Note that
the lattice-mode thresholds are 2 orders lower than those of the slab modes, which have very
high radiation losses.

Further, we investigate only the plasmon-mode eigenvalues because they are well tuneable
with the aid of the change of graphene chemical potential [14–17]. Figure 4 shows the trajecto-
ries of the LEP eigenpairs (fmp ,γmp ) of the plasmon modes at the chemical potential varying from
0.1 to 0.9 eV with the step 0.1 eV.

Here, we use the same geometrical parameters of the structure as in figure 3, i.e. the strip
width is 20 μm, the grating period is 70 μm, the gain layer thickness is 35 μm, the electron
relaxation time is τ = 1 ps, and the temperature is 300 K. Presented are the trajectories of five
plasmonic modes, P1–P5, with their magnetic near-field portraits. As can be seen, the plasmon-
mode eigenpairs are tuneable with the aid of the graphene chemical potential within a factor of
3. The plasmon mode P1 has the largest threshold value over the whole range compared to the
plasmon modes of the larger indices. By increasing the chemical potential, the mode eigenpairs

(a) (b)

(c) (d)

Figure 3. The colour map of the LEP determinant absolute value for the laser configuration from figure 1, on the plane (f,γ)
(a); zoom around the plasmon modes P2 and P3 (b); zoom around the lattice modes, L11

e  and L11
o  (c); zoom around the slab

mode S2 (d). The insets on panels (b,c) and (d) are the near magnetic field patterns for the corresponding modes.
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move approximately along the mentioned hyperbola, shown by the dash-dotted curve in figure
4.

The grey vertical strip around RA1 indicates the area of hybridization of the L11
(o, e) lattice

modes with the plasmon modes of the indices greater than 2, i.e. with P3, P4 and P5, which
makes it difficult to achieve a single-mode operation regime for them in this frequency region.
Similar hybridization takes place for P1 and P2 at chemical potential values larger than 1 eV.
We leave the analysis of the mode hybridization to a separate publication as it needs a more
in-depth study and additional space.

In figure 5, the trajectories of the LEP eigenvalues of the plasmon modes P1 and P2 on the
plane (f, γ) are studied under the variation of the grating filling factor, 2 w/d. Although they are

(b)(a)

Figure 4. The trajectories of the LEP eigenvalues of the y-even plasmon modes P1, P3 and P5 (a) and y-odd modes P2 and P4
(b) on the plane (f, γ) as a function of the graphene chemical potential for the structure with the same parameters as in figure
3. The insets are the magnetic field patterns for these plasmon modes at μc = 0.39 eV.

Figure 5. The trajectories of the LEP eigenvalues of the plasmon modes P1 and P2 on the plane (f, γ) as a function of the
filling factor of the graphene strip grating. The structural parameters are the same as in figure 3.
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both close to the mentioned hyperbola (dash-dotted curve), their behaviours are significantly
different at the large filling factor values, 2 w/d ≈ 1.

Namely, if the grating is dense, then the P1 and P2 modes have comparable frequencies,
however, P1 has an order higher threshold gain values than those of P2.

Figure 6 demonstrates the trajectories of LEP eigenvalues of the plasmon modes P1 to P5
on the plane (f, γ) when the real part of the gain-material layer refractive index, α, is changed
between 1 and 2. Similar to figures 4 and 5, trajectories follow a hyperbola and the mode
P1 has higher threshold values in comparison to the plasmon modes with higher indices. For
comparison, the eigenpairs trajectory based on the analytical approximate formula (A 3)—see
appendix A, at α = 1 and α = 2—are also presented as brown dash-dotted lines.

Finally, figure 7 shows the trajectories of the LEP eigenvalues of the plasmon modes P1–P5
on the plane (f, γ) when the graphene relaxation time τ varies from 0.2 to 1 ps. For comparison,
the curves of approximate relationship (A 3) for τ = 0.2 and τ = 1 eV are also shown as dash-dot-
ted lines. The curves calculated using the full-wave determinant equation (2.20) demonstrate
the same behaviour as for the graphene-wire laser embedded into a circular active region [23],
i.e. the larger τ, the lower the thresholds of all plasmon modes.

4. Conclusions
We have used the accurate numerical technique developed earlier by us to study the wave-scat-
tering problems, and to analyse the LEP for the H-polarized modes of a laser designed as the
infinite graphene strip grating embedded into the layer of gain material. It is based on the
hypersingular integral equation for the strip current, discretized by the MAR-Galerkin method,
i.e. it uses the weighted Chebyshev polynomials of the second kind as full-wave expansion
functions. Owing to the fact that these polynomials are the eigenfunctions of the hypersingular
part of the full integral operator, the projection procedure leads to a Fredholm second-kind
infinite matrix equation for the current expansion coefficients. The determinant of that equation
provides the LEP eigenpairs of all the natural modes of the studied laser configuration. We have
investigated the computational errors for the eigenpairs as a function of the matrix truncation

Figure 6. The trajectories of the eigenvalues of the plasmon modes on the plane (f, γ) as a function of the gain-material
refractive index. The structural parameters are the same as in figure 3.
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number and the graphene chemical potential and have demonstrated the fast convergence of
the solution.

If the grating and layer dimensions are in the microsize range, the natural-mode frequencies
are in the THz-frequency range. Considering the behaviour of the eigenpairs on the colour
map of the LEP determinant absolute value, we have identified various lasing modes of the
microscale laser and determined their threshold conditions dynamics under the variation of
various parameters such as graphene chemical potential, filling factor of the grating, gain-mate-
rial layer refractive index and graphene electron relaxation time. As we have found, the lattice
mode thresholds are the lowest ones, however, the best tunability with the aid of graphene
chemical potential, within a factor of 3, is demonstrated by the plasmon modes. Under
variation of the graphene chemical potential or the strip width, the plasmon modes change their
frequencies and may enter the hybridization regime with the lattice modes. This phenomenon
needs a deeper analysis, which we hope to present in a separate publication.

The real-life gratings have, of course, finite dimensions. To the question of possible devi-
ations from the above-presented theory, caused by that circumstance, a partial answer can
be found in the analysis of the plane-wave scattering from finite graphene strip gratings,
suspended in the free space [31]. As visible from plots in fig. 11 of [31], the gratings of 50
or more strips, each 20 μm wide and placed at 70 μm intervals, demonstrate the same per-
strip reflectance as infinite strip grating in the whole THz range, including all plasmon-mode
resonances, except narrow vicinities of RAs. Today’s graphene strip grating sensors contain
many hundreds and even thousands of strips [22], and hence their characteristics should be
even better reproduced by the infinite-grating model. The same can be expected of the mode
threshold conditions for the finite-grating laser configurations. Namely, the plasmon-mode and
slab-mode thresholds should be rather insensitive to the number of strips, however, the lattice
modes should demonstrate the thresholds, depending on this number until it reaches hundreds
or thousands, depending on the configuration.

The zero-thickness Kubo model of graphene monolayer is another source of possible
deviation from the real-life characteristics. Here, it can be noted that, in fact, the measurements
show that graphene usually has a 2−4 nm thickness [22] which points to the presence of a stack

Figure 7. The trajectories of the LEP eigenvalues of the plasmon modes on the plane (f, γ) as a function of the graphene
electron relaxation time. The structural parameters are the same as in figure 3.
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of several monolayers. It is commonly considered that as long as the number of monolayers is
small, less than 10, it should be added as a factor to the expressions of the complex conductivity
(A 1) in order to obtain the conductivity of the stack.

We have performed our analysis assuming that the gain index, γ, is uniform, i.e. not
dependent on the frequency, while in reality, it is usually characterized by a Lorentzian-like
spectrum. However, it is easy to see that if the gain is uniform within a finite interval and
vanishes off it, then all modes that have their frequencies in this interval keep their thresholds
the same as above, while the thresholds of the other modes turn to infinity.
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Appendix A.
Today, the most widely recognized model of the electron conductivity of the graphene is the
Kubo formalism. At the frequencies up to the X-rays, the graphene monolayer thickness can be
safely assumed zero, and its 10-nm scale hexagonal fine structure can be neglected. Under these
assumptions, graphene’s surface conductivity has two contributions, σ = σintra + σinter, which are
the intraband and interband conductivities. Namely, the first of them is also known as Drude-
like conductivity,

(A 1)σintra = −
jΩζ0ω − jτ−1 , Ω =

qe2kBT
πℏ2ζ0

μckBT + 2ln 1 + exp −
μckBT ,

where ζ0 = μ0/ε0 is the free space impedance. The second term, σinter, is expressed as integral
of known functions [14,15]. The normalized surface impedance (or resistivity) of graphene isZ(ω) = ζ0

−1 σintra + σinter
−1 .

The relative contribution of two terms to Z depends on the frequency and chemical potential
[14,15,23], so that at μc = 1 eV, σinter is less than 0.001 of σintra, in absolute value, if the frequency
is below 60 THz. This allows to neglect the radiation losses and derive approximate expres-
sions for the threshold characteristics of the plasmon natural modes of the flat graphene strip
embedded into the gain medium [4]. Their emission frequencies, fmP = kmP c/2π, and the threshold
values of gain are found as (m = 1,2,3,…),

(A 2)fmP ≈ 1
4πα π m − 0.25 c Ωw  1/2

,   γmP ≈ 2α2τ w
π m − 0.25 c Ω 1/2

.

From (2.19) it follows that the LEP eigenpairs satisfy the equation,

(A 3)γmP ⋅ fmP ≈ α(2πτ)−1,

which is valid provided that the plasmon modes ohmic losses in graphene dominate over the
radiation losses.
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∗ ∗ ∗
Orthogonality of the weighted Chebyshev polynomials of the second kind and their property
as the eigenfunctions of the hypersingular part of the full integral operator are expressed as
follows:

(A 4)
−1

1

1 − s2Um − 1 s  Un − 1 s ds = πδmn/2  ,

(A 5)
−1

1
1 − t2Un − 1 tt − s  2 dt = − nπ Un − 1 s  .
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