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This Theme Issue is a collection of original
research and review papers focused on developing
a class of well-established and innovative analytically
grounded full-wave methods and their applications
in computational electromagnetics. These methods
are notable for their guaranteed convergence,
meaning that the approximate solution obtained by
discretizing and truncating the equation governing
the problem at hand tends to the exact solution if
the truncation order gets larger. Hence, unlike the
numerical approximations with no mathematically
guaranteed convergence, they do not require
post-validation. Moreover, highly accurate solutions
are reconstructed with a low computational cost,
thus allowing a real-time, precise and exhaustive
parametric analysis of various critical structures and
complicated physical phenomena. To conclude, the
obtained solutions deliver trusted physical results
within a reasonable time and without false effects
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and, therefore, can serve as a reference for validating general-purpose commercial software.
This article is part of the theme issue ‘Analytically grounded full-wave methods for

advances in computational electromagnetics’.

1. Introduction
The push towards innovations in nano-optics and photonics, and the use of cutting-edge
materials like graphene—alongside the drive to extend wireless technologies into millimetre-
wave and THz frequency bands—has spurred the development of versatile, full-wave electro-
magnetic simulation tools. Among the various approaches, integral equation methods stand out
due to two key advantages: they inherently enforce the correct behaviour of the electromagnetic
fields at infinity (radiation condition) and operate with unknowns confined to bounded regions,
simplifying computations [1].

However, when a problem cannot be naturally cast as a Fredholm integral equation of the
second kind, or when its discretization fails to preserve that structure, or if discretization does
not lead to the matrix equations with diagonal predominance, the accuracy and reliability of
the solution become uncertain [2]. This is because of the absence of convergence, understood
as the possibility of minimizing computation error, which is a certain norm, all the way to
machine precision of the computer used, by increasing the discretization order, i.e. the final
matrix truncation number.

Although rarely recognized in the engineering community, such an unfortunate situation
happens in a broad class of wave propagation, radiation and scattering problems, involving
open scatterers, objects with wedges, planar surfaces, etc., that can be equivalently formulated
as singular integral equations, for which the Fredholm theory cannot be applied. In such cases,
ex-post validation, i.e. comparisons with analytical solutions, experimental measurements or
asymptotic results, is crucial, since there is no general assurance of the true solution’s existence
and no measure of the nearness, in any sense, of the numerical approximation to the true
solution. As a result, there is no instrument to improve the accuracy of the obtained approxi-
mations systematically. This is a common limitation of general-purpose commercial software.
Moreover, these tools often struggle with the analysis of advanced structures involving
ultrathin materials (e.g. graphene sheets), infinite or open boundaries, or with capturing
complex phenomena like natural mode resonances in the THz and optical ranges, making such
problems challenging or even unmanageable for standard software.

On the other hand, all these troubles can be completely overcome using analytically
grounded full-wave methods, i.e. methods for which the convergence of the discretization
scheme adopted is guaranteed. Among them, the Method of Analytical Regularization (MAR)—
including, among others, the Modified Wiener–Hopf technique, the Abel Transform techni-
que and the Riemann–Hilbert Problem technique—the Method of Analytical Preconditioning
(MAP), also known as Regularizing Galerkin technique, and various forms of the Nyström
Discretization technique deserve to be mentioned.

MAR has been a cornerstone in addressing challenging integral equations for decades
[3]. MAR encompasses techniques aimed at transforming various strongly singular integral
equations and weakly singular first-kind integral equations into the integral or matrix equa-
tions of the Fredholm second kind, ensuring well-posedness and guaranteed convergence. The
underlying idea is conceptually straightforward yet mathematically elegant: isolate a suitably
chosen most singular part of the integral operator and invert it analytically. This reference
operator can be tailored to the specific problem—it is often taken as the static, high-frequency
or canonical geometry component of the original operator. To carry out its inversion, powerful
tools from functional analysis are employed, such as the Titchmarsh theorem, Wiener–Hopf
factorization, Carleman formula, Cauchy and Abel transforms and Sokhotski–Plemelj theorem
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in the Riemann–Hilbert Problem theory. Moreover, for problems involving canonical shapes,
separation of variables is frequently applied to derive explicit solutions to the invertible
reference equations.

In a broad class of problems, analytical regularization and discretization of an integral
equation are carried out simultaneously, giving rise to what is known as MAP [4]. This
technique involves selecting the eigenfunctions of a carefully chosen singular part of the
integral operator—typically a suitable part including the most singular one—as the expansion
functions. In such a case, the Galerkin projection works as a perfect preconditioner, resulting in
a Fredholm second-kind matrix equation. More generally, Fredholm theory remains applicable
if the discretized operator can be written as the sum of an invertible operator (with a continuous
inverse on both sides) and a compact (completely continuous) operator. When the convergence
is guaranteed, numerical accuracy can be easily controlled by the matrix truncation order.
In principle, the error can be brought to machine precision, which is unthinkable for today’s
popular commercial codes.

The Wiener–Hopf technique [5] provides a rigorous analytical framework that yields exact
solutions for wave diffraction and scattering from the perfectly electrically conducting (PEC)
half-plane. Therefore, it can be used to build MAR-type solutions for certain more complicated
geometries, ‘modified’ with respect to the halfplane—e.g. a finite PEC strip or several PEC
halfplanes. It explicitly incorporates all the mathematical requirements, including the boundary,
radiation and edge conditions, into the analysis and has been applied to various areas in
science and engineering, such as electromagnetics, acoustics, elastic wave propagation and fluid
dynamics. Moreover, in recent years, the range of applications of the Wiener–Hopf technique
has been systematically extended to model complex mathematical-physics wave-scattering
problems in various frontier disciplines, including nano-photonics, biomechanics and metama-
terials.

The Nyström Discretization technique [6] allows for converting integral equations, partic-
ularly those encountered in electromagnetics, into a system of linear equations using the
theorems of the quadrature approximations of singular integrals. Depending on the problem
at hand, a suitable choice of the quadrature rule leads to guaranteed convergence, that, in the
context of the Nyström method, refers to the assurance that as the number of quadrature points
used in the numerical integration is increased, that is, the discretization refined, the approxi-
mate solution converges to the exact solution of the singular integral equation. According to the
corresponding approximation theorems, this is provided by the diagonal predominance in the
matrix equations obtained.

2. Theme Issue articles overview
This Theme Issue aims to collect the more recent developments in the analytically grounded
full-wave methods and their applications for the new challenging frontiers of computational
electromagnetics. In this section, a brief description of the contents of the articles in this issue
will be presented.

In the article by Herasymova et al. [7], the infrared-range diffraction radiation from finite
configurations of circular graphene-covered dielectric nanowires excited by the density-modu-
lated beam of charged particles is addressed using the MAR. Here, the problem is trans-
formed into a well-conditioned algebraic equation for the field expansion coefficients using
the separation of variables and the addition theorem for the cylindrical functions, thus leading
to the explicit inversion of the single-wire part of the problem. Kuryliak & Lysechko [8] apply a
MAR technique based on the Abel integral transformation to study the scalar wave diffraction
from an open-ended sphere-conical cavity, which is of significant interest in applied phys-
ics and engineering to model waveguide probes in microwave diagnostics, tripod-supported
concave spherical reflectors and antennas, surface defects, etc. In the article by Oğuzer [9], the
focusing ability of an electrically large thin dielectric parabolic reflector sandwiched between
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graphene covers illuminated by an E-polarized plane wave is addressed using the MAR based
on a Fourier inversion procedure and the Riemann–Hilbert Problem technique. In their review
article, Vinogradova & Smith [10] show the application of MAR based on the Abel integral
transform to the electromagnetic wave scattering from perfectly electrically conducting (PEC)
arbitrary slotted cylinders and axisymmetric thin-walled shells with one or two apertures.

The still not thoroughly addressed problem of handling entire unknowns and exponen-
tial phase factors in the solution of Wiener–Hopf equations, which is present each time
the spectral-domain Wiener–Hopf method is applied to scattering problems involving finite
penetrable/impenetrable regions, e.g. strips, slots, slits, bricks and cylindrical structures of
various shapes that can be staggered concerning each other, is successfully addressed by
Daniele & Lombardi [11]. Moreover, a review paper on the application of the Wiener–Hopf
technique to the rigorous analysis of the radar cross section of two-dimensional cavities formed
by a terminated, semi-infinite/finite parallel-plate waveguide with three-layer material loading
is proposed by He et al. [12].

The transmission of the electromagnetic field through a circular aperture in the PEC plate
is evaluated in the paper by Lovat et al. [13]. The problem, formulated as a set of dual integral
equations for the equivalent magnetic source on the hole, is regularized by means of MAP,
thus leading to a fast convergence. A variant of MAP, specifically called the Helmholtz–Galer-
kin technique, is adopted by Lucido [14] to efficiently regularize a suitable system of spectral-
domain integral equations, resulting in the plane-wave scattering from a finite set of coplanar
thin circular resistive discs in free space. Schettino et al. [15] regularize the electric field integral
equations, formulating the plane-wave scattering from a finite-length closed PEC circular
cylinder using MAP with expansion functions, which are the eigenfunctions of the singular
part of the integral operator, reconstructing the field behaviour on the wedges. Zinenko et al.
[16] use MAP with the weighted Chebyshev polynomials to accurately establish the threshold
conditions for the natural modes of the microsize plasmonic laser shaped as an infinite flat
graphene strip grating symmetrically embedded into the gain-material layer. It is worth noting
that the canonical-shape MAR technique used in [7] can also be considered as a MAP scheme
with the trigonometric polynomials, in the local coordinates of each circular wire, as expansion
functions.

Dushkin [17] develops a variant of the Nyström scheme for the convergent numerical
solution of the Cauchy-singular integral equations devised in analysing the scattering from
non-PEC strips and strip gratings with and without a screen. Kaliberda & Pogarsky [18]
use the mathematically grounded method of hyper-singular integral equations and meshless
Nyström-type algorithm to study the modification of the radar cross section of a circular
dielectric cylinder with coplanar graphene strips inside, focusing on the variation of the
chemical potential and the excitation of associated plasmon resonances. Li & Lu [19] extend
the perfectly matched layer-boundary integral equation method, combined with a suitable
discretization technique of the Nyström type, to a two-dimensional electromagnetic scattering
problem in a two-layer medium of a step-like interface. In the paper by Petropoulos & Turc [20],
the scattering involving semi-infinite, infinite but not necessarily periodic, as well as large finite
arrays of identical obstacles in free space in two dimensions, is studied using the decomposition
numerical approach together with boundary integral equations and Nyström discretization.
Tsalamengas [21], in the analysis of the transmission of H-polarized electromagnetic waves
through a slot in a thick and perfectly conducting screen, formulated in terms of singular
integral equations, combines the Nyström method with a specialized quadrature scheme based
on variable transformation methods to handle kernel and geometric singularities.

In [22], Koshovy constructs correct asymptotical models of wave scattering from sparsely
filled gratings of electrically narrow strips starting from log-singular and Cauchy-type integral
equations. Nicholls [23] provides a high-order perturbative analysis of the Dirichlet–Neumann
operator in a nonlinear Kerr medium via an interface-based method. The review paper by
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Tsitsas [24] presents an overview of integral-equation methods for all-dielectric isotropic
grating, including boundary and volume integral equation methods, analytical regularization
methods, the extended boundary condition method and methods employing auxiliary sources.
Yin & Zhang [25] revisit and outline highly accurate boundary integral equation solvers
for solving the acoustic, elastic and electromagnetic layered-medium scattering problems,
especially the Windowed Green’s Function technique and the perfectly matched layer-boundary
integral equation method.
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