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We analyse the scattering and absorption of a
terahertz-range plane wave by a thin circular dielectric
disk with two graphene covers. Assuming that the
thickness of the whole composite disk is much
smaller than the free-space wavelength, we reduce
the complexity of the problem with the aid of
the generalized boundary conditions. This yields a
set of singular integral equations for the effective
electric and magnetic currents, induced on an
equivalent zero-thickness disk. The adopted advanced
numerical solution technique is a version of the
method of analytical preconditioning, which uses
weighted polynomials as expansion functions in the
discretization of the integral equations. Then, the
resulting matrix equation has Fredholm second-kind
property that enables us to control the computational
error by the matrix size and reduce it to the desired
level. This accurate analysis reveals resonances on
several types of natural modes, best understood via
visualization of in-resonance near-fields. They are
the plasmon-mode resonances of the graphene disk,
perturbed by the presence of the dielectric filler, and
the dielectric disk modes, perturbed by the graphene
covers. Additionally, quasi-full disk transparency is
observed if the transverse resonance condition is
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fulfilled. Special attention is paid to the tunability of the found effects with the aid of
graphene’s chemical potential.

1. Introduction
The patterned graphene configurations are actively exploited in the ongoing research and
development of innovative infrared and terahertz (THz) devices and systems [1–3]. This is
because of two properties featured by graphene [4]: (i) its surface conductivity is very high
and, moreover, tunable with the aid of a DC bias, which translates into graphene’s chemical
potential and (ii) the surface impedance of graphene (inverse to the conductivity) has an inductive
imaginary part that leads to the existence of the moderate-lossy plasmon guided wave on an
infinite sheet of graphene. On the finite-size graphene structures, the mentioned plasmon wave
bounces between the sample edges and creates the standing waves, i.e. the natural plasmon
modes. The resonance frequencies of these modes, as a result, are also tunable with the aid of a DC
bias. The resonances on the graphene plasmon modes are actively studied today and have already
found applications in the design of novel biosensors [5–7] and antennas [8] in the mid-infrared
and THz ranges. The use of graphene, instead of the noble metals, in the design of plasmonic
nanolasers is also actively discussed [9].

What is also important, the wavelength of the plasmon guided wave is much smaller than the
free-space wavelength [4]. Therefore, the frequencies of the lowest plasmon modes on the finite
samples of graphene are found in the sub-wavelength range relative to the free-space wavelength.
Note also that the bulk losses in graphene and hence the attenuation constant of the plasmon
guided wave is rather small—therefore, the plasmon natural modes have moderate Q-factors
around 100 in the THz range and above that value in the infrared range. Additionally, although
free-standing or suspended graphene is realizable and attracts the attention of researchers as more
chemically stable [10], in most practical situations, graphene lies on dielectric substrates, which
provide mechanical rigidity.

Despite rapid advances of nanotechnologies, the manufacturing of the patterned graphene
configurations on dielectric or semiconductor substrates, using the chemical vapour deposition
(CVD) and subsequent molecular-beam epitaxy processes, is still an expensive matter [11].
Therefore, a preceding computer modelling, if it is trusted, fast and accurate, is important
as a tool of design that enables avoiding costly and time-consuming prototyping. Here, one
can see a sort of permanent competition between the general-purpose commercial codes,
which have relatively low accuracy and may suffer from the convergence troubles (see [12,13]
for some reviews), and mathematically sophisticated advanced in-house algorithms [14]. The
latter are superior in performance because of the guaranteed convergence and controlled
accuracy to machine precision, however, are normally oriented to handle a narrower class
of electromagnetic geometries. Additionally, commercial codes, especially those based on the
finite-difference time-domain approach, entail huge numbers of unknowns and correspondingly
enormous computation times even for simple mesoscale objects, if they are in the free space,
and the radiation condition is satisfied only approximately. As mentioned in [14], all these
numerical troubles can be completely eliminated with either of two especially advantageous
approaches—the method of analytical regularization (MAR) and the Nystrom discretization of
the associated singular integral equations (ND-SIEs) [15]. These convergent techniques exploit
the fact that graphene is, actually, a zero-thickness resistive sheet with frequency-dependent
resistivity (resistivity is a short term substituting for the longer expression complex electric surface
resistance; an equivalent term is surface impedance).

Among many possible forms of the patterned graphene, the most frequent are perhaps the
straight strips and the circular disks, because of their simplicity. Therefore, it is no surprise
that the scattering and absorption of infrared and THz waves by graphene strips and arrays of
them has been a topic of numerous research papers—see, for instance, [16–19] and references
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therein. The most reliable and accurate results have been computed using the MAR approach
based on the static-part inversion [16,17] and the ND-SIEs [18,19] with Chebyshev quadratures.
In a similar manner, the scattering and absorption by graphene disks and arrays of them has
been treated using various approaches and techniques. The Purcell effect, i.e. modification of the
elementary dipole radiation in the presence of graphene disk, was analysed with MAR in the
Hankel transform domain in [20] and the plane wave scattering and absorption by such a disk
was treated with analytical preconditioning of SIEs in [21]. Nystrom discretization can be also
used if the perfectly electrically conducting (PEC)-disk algorithm of Bulygin et al. [22] is slightly
modified to adapt to the resistive surface boundary conditions.

Still, as mentioned, in most realistic situations, graphene lays on finite-thickness dielectric
substrates, which can bring additional effects such as guided waves, on infinite layers, and
morphology-dependent natural modes and associated scattering resonances, on finite substrates.
Although disks on infinite substrates are beyond our work, we can point out that they are
accessible both with MAR and ND-SIEs if the free-space Green’s function is replaced with the
appropriate Green’s function of the layered host medium. The latter functions are always known
as Fourier–Hankel transforms of certain functions, the poles of which correspond to the guided
waves. Along these lines, MAR analysis of the axially symmetric radiation of elementary dipoles
above a resistive disk residing on a substrate was performed in [23].

The goal of our work is the accurate analysis of the resonance effects in the scattering and
absorption of a THz-range plane electromagnetic wave, obliquely incident on the composite
circular disk made of three different layers: graphene, dielectric and graphene, i.e. GDG disk.
Under the assumption that the total thickness is much smaller than the free-space wavelength,
such a ‘sandwich pillbox’ can be characterized using the generalized boundary conditions
(GBC) [24,25]. GBC allow to eliminate the inner field and consider the disk as zero thickness.
However, the latter value is still present: GBC involve two complex-valued resistivities, electric
and magnetic, which depend on the optical thickness and material parameters of both dielectric
and graphene [26].

In our analysis, we use the analytical–numerical MAR technique, earlier developed for single
thin dielectric disk [27,28] and single graphene disk [21], in the free space. It is based on
the derivation, using the GBC, of a set of SIEs for each azimuthal Fourier harmonic of the
scattered field, where the unknown functions are the harmonics of the effective electric and
magnetic currents on the disk. Then, these SIEs are projected on the sets of judiciously selected
basis functions, which are related to certain Jacobi polynomials and serve as the orthogonal
eigenfunctions of the most singular parts of SIEs. Such a projection, besides the discretization of
SIEs, enables analytical inversion of their most singular parts and casts the SIEs to the Fredholm
second kind infinite-matrix equations. Therefore, this technique is also called the method of
analytical preconditioning (MAP). The latter equations can be truncated and solved numerically,
with their convergence guaranteed by the Fredholm theorems and the accuracy controlled by the
truncation order.

As the SIEs for the GDG disk differ only by the effective resistivities, adapted to account
for the sandwich structure, and the MAP procedure remains the same, here we skip the details
and instead cite the corresponding equations of [28]. Note that we use the time dependence as
exp(+jωt), where ω is the cyclic frequency, which is omitted.

2. Formulation and solution method
In figure 1, a GDG disk, i.e. a homogeneous and isotropic dielectric disk covered by two
monolayer graphene disks, one for each side, and located in the free space, is sketched. A
Cartesian coordinate system, (x, y, z), and a cylindrical coordinate system, (ρ, φ, z), are introduced
so that the z-axis coincides with the disk axis and the median surface S of the GDG disk is
located at the abscissa z = 0. The notations a, τ , ε0, μ0, εr, μr, σs stand for, respectively, the
disk radius, the disk thickness, the free space dielectric permittivity and magnetic permeability,
the relative dielectric permittivity and the relative magnetic permeability of the dielectric
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Figure 1. Geometry and notations for the arbitrary plane wave scattering from a thin dielectric disk with graphene covers.
(Online version in colour.)

material, and the graphene surface conductivity. Henceforth, the symbols, λ, k0 = 2π/λ =
ω

√
ε0μ0 and Z0 = √

μ0/ε0 will be used to denote the free-space wavelength, wavenumber
and impedance, respectively. A scattered field is generated by the impinging plane wave
sketched in figure 1, where Einc(r) = E0e−jk·r, Hinc(r) = (Z0k0)−1k × E0e−jk·r, r = (ρ, φ, z) and k =
−k0(sin θ0 cos(φ0 − φ)ρ̂ + sin θ0 sin(φ0 − φ)φ̂ + cos θ0ẑ), so that the total field, {E(r), H(r)}, is given
by the sum of the incident field and the scattered field.

Supposing that τ � a and τ � λ, the field inside the dielectric disk can be neglected and the
finite-thickness disk itself approximated with a zero-thickness disk located at the median surface
S. The latter disk can be interpreted as a finite part of a generalized imperfect surface characterized
with suitable complex surface resistances, or simply resistivities [24]. Just as an example, for μr = 1,
and for a high-contrast dielectric material, i.e. |εr| � 1, or for normal incidence of the plane wave,
the electric and magnetic resistivities of a thin dielectric slab are found as [24],

R′
e = −j

Z0√
εr

cot
(

1
2

k0τ
√

εr

)
(2.1a)

and

R′
m = −j

√
εr

Z0
cot

(
1
2

k0τ
√

εr

)
. (2.1b)

These values serve as coefficients in GBC, which have to be imposed on the zero-thickness
layer when neglecting the inner domain of the slab and the associated inner electromagnetic field.
Besides, in the analysis of the scattering from finite-radius disk, these GBC (derived for the infinite
dielectric slab) have to be supplemented with a condition that limits the singularity of the field at
the disk’s sharp rim. Such a condition is known to be the finiteness of the field power in the local
sense, i.e. in any finite domain containing the rim.

On the other hand, the monolayer graphene disk can be seen as a finite resistive surface
characterized with a complex surface resistivity or surface impedance, which, in turn, is the
inverse of the graphene surface conductivity. Assuming that a ≥ 50 nm, the edge effects on the
graphene surface conductivity can be neglected. Indeed, it has been experimentally demonstrated
that those effects only appear in structures with lateral dimensions considerably smaller than
100 nm [29]. Moreover, supposing that there is no magnetic bias field, the graphene can be
assumed to be isotropic in the THz range due to the small with respect to the wavelength
characteristic size of the honeycomb lattice nanostructure (10 nm). Taking into account that
interband effects, in conductivity, can be neglected at all the frequencies below the visible light,
the graphene surface conductivity can be expressed as a function of the cyclic frequency and the
relaxation time (trelax) by means of the Kubo formalism [4],

σs = Ω

jω + t−1
relax

(2.2)
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where

Ω = q2
ecBT

π h̄2

{
μc

cBT
+ 2ln

[
1 + exp

(
− μc

cBT

)]}
. (2.3)

In equation (2.3), qe is the electron charge, cB is the Boltzmann constant, T is the temperature,
h̄ is the reduced Planck constant and μc is the chemical potential. The corresponding graphene’s
electric resistivity or surface impedance is

R′′
e = 1

σs
= j

ω

Ω
+ 1

trelaxΩ
. (2.4)

As a result, the GDG disk can be interpreted as the superposition of three zero-thickness disks
located at the plane z = 0. Hence, according to Bleszynski et al. [24], the total electric and magnetic
fields have to satisfy the following GBC on S:

1
2

ẑ × (E(ρ, φ, 0+) + E(ρ, φ, 0−)) × ẑ = ReJ
e
(ρ, φ) (2.5a)

and
1
2

ẑ × (H(ρ, φ, 0+) + H(ρ, φ, 0−)) × ẑ = RmJ
m

(ρ, φ), (2.5b)

where the effective electric current density, J
e
(·, ·), and the effective magnetic current density,

J
m

(·, ·), are defined as the jumps across S of the tangential components of the magnetic and
electric fields to the GDG disk surface, respectively. Based on the strategy developed in [26],
which allows to simply combine the resistive BC on the graphene monolayer with GBC on the
zero-thickness dielectric substrate into a new set of effective GBC, it is possible to establish
the following expressions for the effective electric and magnetic resistivities of the GDG disk,
respectively:

Re = R′
e

1 + 2R′
e/R′′

e
(2.6a)

and

Rm = 1
2R′′

e
+ R′

m (2.6b)

In figure 2, we demonstrate the frequency dependences of the real and imaginary parts of
the graphene surface impedance, R′′

e , and the electric and magnetic resistivities of the composite
GDG structure, Re and Rm. The graphene parameters are T = 300 K, trelax = 1 ps, and µc =
0.1, 1, 10 eV while the relative dielectric permittivity and dielectric thickness are, respectively,
εr = 12(1 − j10−5) and τ = 2 µm.

As can be seen, the electric resistivity of the composite GDG structure features a remarkable
peak of the real part and a double extremum of the imaginary part at the same frequency,
controlled by the chemical potential. If the potential gets larger, then this frequency tends to the
natural frequency of the lowest transverse resonance of the flat infinite slab of the same thickness
and permittivity sandwiched by PEC planes; at this frequency, τ ≈ λ/

(
2
√|εr|

)
. The corresponding

natural mode can be called the slab mode and denoted by the symbol S0; excitation of this
mode entails quasi-full transparency of the slab. Note that such a tunable transparency of a GDG
sandwich cylindrical parabolic reflector, illuminated by the E-polarized plane wave, was recently
found in [30].

Therefore, we have a boundary value problem for the Maxwell equations, which is still three
dimensions, however, simpler than the original problem for a finite-thickness disk. The cost of
this simplification is clear: after such a replacement, we lose the information of the fine details at
the rim of the original disk. Nevertheless, this problem admits a unique solution provided that
the boundary conditions, local power finiteness condition and Silver–Muller radiation condition
are satisfied [14,31]. According to the second Green’s formula, since the scattered electric and
magnetic fields can be expressed as the convolution of the effective electric and magnetic current
densities, respectively, with Green’s functions and their normal to the disk derivatives, the
equations (2.5a) and (2.5b) can be interpreted as two decoupled surface integral equations for the
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Figure 2. Frequency dependences of the real and imaginary parts of the graphene surface impedance (a), and the electric (b)
and magnetic (c) resistivities of the GDG composite for εr = 12(1 − j10−5),μr = 1, τ = 2µm, T = 300 K, trelax = 1 ps and
μc = 0.1, 1, 10 eV. (Online version in colour.)

effective current densities [24]. The revolution symmetry of the problem allows to reduce such
equations to two infinite sets of independent one-dimensional integral equations in the Hankel
transform domain for the spectral domain counterpart of the azimuthal harmonics of the effective
current densities [32].

It is well known that no closed-form solutions for the obtained integral equations are available,
hence, a discretization scheme has to be adopted to search for an approximate solution of the
problem at hand. We apply a MAP discretization scheme, which is based on the Helmholtz–
Galerkin technique developed in [21,27,28,33–35]. New unknowns are assumed according to the
Helmholtz decomposition [36]: the surface curl-free contribution and the surface divergence-free
contribution of the general harmonic of each effective current density. Suitable sets of orthonormal
eigenfunctions of the most singular part of the integral operator, reconstructing the behaviour
of the general harmonic of the currents at the disk rim and around the centre of the disk and
admitting a closed-form spectral domain counterpart, are adopted to expand the unknowns in the
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spatial domain [21,27,28,33–35]. In this way, the diagonalization of the most singular part of the
integral operator immediately follows from the Galerkin projection. Moreover, the remaining part
of the discretized operator is a compact operator in l2 and the free term has a bounded l2-norm,
thus leading to a Fredholm second-kind matrix operator equation, i.e.

X(n)
r + A(n)

r X(n)
r = B(n)

r , (2.7)

where r = e, m, X(n)
r is the vector of the unknown expansion coefficients of the nth harmonic of

the effective electric/magnetic current density, the elements of the compact matrix operator A(n)
r

differs from the ones in [28] only for the expression of the electric and magnetic resistivities
and B(n)

r is the free-term vector defined in [28]. Moreover, the elements of the matrix A(n)
r ,

which are one-dimensional improper integrals involving the products of Bessel functions of the
first kind, are accurately and efficiently evaluated thanks to analytical techniques specifically
developed in [34,35]. Hence, the convergence of the approximate solution, obtained by means of
the truncation of the matrix equation, to the exact solution of the problem, is guaranteed. As will
be shown later, the convergence is even fast because the selected expansion functions reconstruct
the expected physical behaviour of the fields. It is worth observing that the computations
relating to equation (2.7) may be readily reproduced by the reader by using the expressions
and formulae explicitly provided in Appendix A of [28]. Indeed, these formulae may be
coded straightforwardly in a MATLAB environment or similar, needing only a quadrature
routine, evaluation of Bessel functions and a standard matrix equation solver, recognizing
that the equations are well conditioned and not of large order. Other computations such as
far-field patterns and postprocessing are completely standard and straightforward: the closed-
form expressions for the absorption cross-section (ACS), total scattering cross-section (TSCS) and
related quantities are available in [28] and are simple to implement.

3. Numerical results

(a) Convergence and validation
The aim of this section is to show the efficiency of the proposed method in the characterization
of the physical properties of a GDG disk with τ � a and τ � λ. Henceforth, we will implicitly
assume μr = 1, a = 50 µm, τ = 0.04a, T = 300 K and trelax = 1 ps.

It is worth remembering that, by virtue of Fredholm theory, the convergence of the proposed
method is guaranteed, i.e. the approximate solution obtained by truncating the matrix equation
(2.7) tends to the exact solution of the problem as the truncation order tends to infinity. Now, we
want to visualize the convergence and introduce the following relative computation error:

errr,N(M) =

√√√√√
∑N−1

n=−N+1 ||x(n)
r,M+1 − x(n)

r,M||2
∑N−1

n=−N+1 ||x(n)
r,M||2

, (3.1)

where 2N − 1 is the number of the considered azimuthal harmonics estimated as in [37], || · || is
the usual Euclidean norm and x(n)

r,M is the vector of the expansion coefficients of the nth harmonic
of the effective electric/magnetic current density evaluated by using M expansion functions for
each unknown. It is worth noting, even if well known to the scientific community, that the error
in (3.1), which is related to the currents’ reconstruction, is of the order of magnitude larger than
the relative computation error defined on the far-field. As mentioned in the previous section, once
the currents are reconstructed, the far-field, the ACS, the bistatic radar cross section and the TSCS
can be simply evaluated by means of closed-form expressions [28].

In figure 3, the behaviour of the relative computation error for the GDG disk with
εr = 12(1 − j10−5) and μc = 1 eV is plotted for varying values of M and three operating frequencies
(1, 5, 10 THz). Even if the analytical-numerical technique proposed in this paper works
independently of the plane wave incidence angle and polarization, we concentrate on some
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Figure 3. Relative computation error for the GDG disk with εr = 12(1 − j10−5),μr = 1, a= 50µm, τ = 0.04a, T = 300 K,
trelax = 1 ps,μc = 1 eV versus M at N = 6, 14, 20 adapted to the three operating frequencies of 1, 5, 10 THz, respectively, for
normal incidence (θ0 = 0◦) (a) and grazing incidence (θ0 = 90◦,φ0 = 0◦) and TE polarization (b). (Online version in colour.)

cases avoiding others just for the sake of brevity. In figure 3a, the normal to the disk surface
incidence plane wave is considered (θ0 = 0◦). In such a case, only the harmonics for n = ±1
contribute to the field’s representation. The convergence is really very fast as M = 20 allows to
obtain errr,N(M) < 10−3 in all the cases examined. Moreover, errr,N(M) < 10−4 is achieved for
M = 40 in all the cases examined. In figure 3b, the plane wave impinges onto the disk surface at the
grazing incidence (θ0 = 90◦, φ0 = 0◦) with TE polarization. As can be clearly seen, the convergence
rate is substantially not affected by the incidence angle. Indeed, M = 20, 40 allow to obtain again
erre,N(M) < 10−3, 10−4, respectively, in all the cases examined. For the sake of completeness, it is
worth observing that the proposed method is very efficient even in terms of computation time.
Indeed, a few seconds are needed to reconstruct the solution by means of an in-house software
code running on a laptop equipped with an Intel Core i7–10510U 1.8 GHz, 16 GB RAM.

(b) Normal incidence
In order to validate the GBC model, i.e. the replacement of a finite-thickness graphene-covered
disk with its zero-thickness counterpart, in figure 4, the frequency dependence of ACS for such
a model with εr = 1 and μc = 1 eV is compared, for normal incidence, with ACS of two stacked
graphene disks, with distance τ between them and the same other parameters, analysed using
the full-wave guaranteed-convergence method proposed in [38]. As can be clearly seen, the
agreement is very good across the entire frequency range considered.

The next step is the analysis of the resonance behaviour of the GDG disk in the THz range.
Each resonance is caused by some natural mode of the scatterer, and their frequencies can be
identified by the peaks of TSCS and ACS. For this reason, in figure 5, TSCS and ACS of the GDG
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Figure 5. Normalized TSCS and ACS of the GDG disk with εr = 12(1 − j10−5),μr = 1, a= 50µm, τ = 0.04a, T = 300 K,
trelax = 1 ps,μc = 1 eV, for varying values of the frequency and normal incidence. (Online version in colour.)

disk with the same parameters as in figure 3, are plotted for varying frequency, at the normal
incidence, while, in figures 6–9, the resonances at the frequencies marked in figure 5 are studied.

The first, in frequency, resonance is seen at 1.2008528 THz, where the graphene impedance
|R′′

e/Z0| is relatively small, approximately thrice smaller than the free-space impedance (figure 2a),
i.e. graphene is well conducting. It is worth observing that the corresponding peak of TSCS
is at 1.2673490 THz (figure 6). The discrepancy between those two values results from the low
Q-factor of this resonance. Inspection of the literature shows that such a resonance is observed
even on a PEC disk as the first peak of TSCS [39], although shifted to 1.5081333 THz (figure 6).
At this frequency, ka = k11a = 1.5804069 that means 2a ≈ λ/2. Therefore, the corresponding mode
is the ‘half-wave dipole mode’ of a PEC disk. Higher-order ‘dipole’ resonances can be seen at the
frequencies corresponding to 2a ≈ mλ/2, where m = 2,3, . . . As expected, the Q-factors of these
resonances are low: for the first one, it is above 1 but becomes even lower for the higher-order
ones [39].

As can be seen in figure 6a, the curves, indeed, demonstrate that by increasing the chemical
potential, which improves the conductivity, the behaviour of TSCS of the GDG disk approaches
the same of the PEC disk. A confirmation of this interpretation is given by the behaviour of the
total near electric field plotted in figure 6b,c, which is very small on the GDG disk surface except
for the bright edge due to the singular edge behaviour of the electric field. Still, on the GDG disk,
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Figure 6. Normalized spectra of TSCS of the GDG disk with εr = 12(1 − j10−5), μr = 1, a= 50µm, τ = 0.04a,
T = 300 K, trelax = 1 ps, and three values of the chemical potential (μc = 1, 10, 100 eV), compared with TSCS of a PEC disk
with the same radius, for normal incidence (a), and total near electric field behaviour at the resonance frequency 1.2008528 THz
for E0 = 1ŷ V/m: E-field in the xy-plane (b) and E-field in the xz-plane (c). (Online version in colour.)

the lowest, in frequency, resonance can be also interpreted as the resonance on the lowest plasmon
mode, P11—see an approximate description of the circular plasmonic scatterers as Fabry–Perot
resonators [40]. Note that, at the normal incidence, there are no other azimuthal harmonics except
those with n = ±1, in the scattered field. Therefore, the whispering-gallery-like modes with n � 1
cannot be excited—they need oblique plane wave incidence.

The physical meaning of the resonances at 3.4463484 and 4.1314688 THz in figure 5 is explained
in figure 7—they correspond to the plasmon modes P12 and P13 (figure 7b–e). In figure 7a, ACS
of the considered GDG disk is compared with the one of a GDG disk obtained by substituting
the dielectric material with air, which, as clearly shown in figure 4, works like two stacked
graphene disks in the considered range of frequencies. Thus, the plasmon-mode resonances, P1m,
typical of the graphene disk [21], are excited on the considered GDG disk as well. However,
their resonance frequencies are down-shifted due to the dielectric material between the graphene
disks; the smallest shift is observed for the lowest in frequency ‘quasi-PEC’ plasmon mode P11,
apparently because of small |R′′

e/Z0| values. This mode can be still called the ‘half-wave dipole
mode’, however, now in terms of the wavelength of the hybrid plasmon guided wave of the pair
of graphene monolayers. Then, the approximate characteristic equation is J′m(gplasa) = 0, where
gplas is the propagation constant of that wave and J′m(·) is the derivative of the Bessel function of
the first kind and order m.
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Figure 7. NormalizedACSof theGDGdiskwithεr = 12(1 − j10−5),μr = 1,a= 50µm,τ = 0.04a, T = 300 K, trelax = 1 ps,
μc = 1 eV, compared with the one of a GDG disk obtained by substituting the dielectric material with air (εr = 1), for varying
frequency and normal incidence (a), and total near electric field behaviour in the xy-plane at two plasmon-mode resonance
frequencies for both the disk configurations and for E0 = 1ŷ V/m: E-field for εr = 12(1 − j10−5) at 3.4463484 THz (b), E-field
for εr = 12(1 − j10−5) at 4.1314688 THz (c), E-field for εr = 1 at 3.9218522 THz (d) and E-field for εr = 1 at 5.5817095 THz (e).
(Online version in colour.)

The resonance at 5.1702977 THz, showing a maximum of ACS, corresponding to a minimum
of TSCS (figure 5), has a different nature—it can be called transverse-mode resonance because it
is associated with the lowest mode of the infinite GDG slab, S0. This conclusion is justified by the
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Figure 8. Normalized spectra of ACS, BSCS and FSCS of the GDG disk with εr = 12(1 − j10−5), μr = 1, a= 50µm, τ =
0.04a, T = 300 K, trelax = 1 ps, μc = 1 eV, compared, respectively, with the normalized (to the incidence power) power
absorbed, scattered into the upper half-space and scattered into the lower half-space from a GDG slab with the same other
parameters as the GDG disk, for normal incidence (a), and total near electric field behaviour at the resonance frequency
5.1702977 THz for E0 = 1ŷ V/m in the xy-plane (b), and in the xz-plane (c). (Online version in colour.)

plots in figure 2b. Indeed, when replacing a ‘thick’ disk with a zero-thickness one with GBC on
the former’s median section, the thickness goes to the coefficients of GBC via the equations (2.1a)
and (2.1b). As a result, the electric resistivity of the GDG composite has a peak, which is located
at 5.1702977 THz if μc = 1 eV—this peak then transfers into the peaks of TSCS and ACS.

This interpretation is also supported by the plots in figure 8a, where ACS, the back-scattering
cross section (BSCS) and the forward-scattering cross section (FSCS) of the considered GDG
disk are compared, respectively, with the normalized (to the incidence power) power absorbed
(Pabs

slab/Pinc), scattered into the upper half-space (Psc,z>0
slab /Pinc) and scattered into the lower half-

space (Psc,z<0
slab /Pinc) from a GDG slab with the same thickness, graphene covers and dielectric

filler. As clearly shown in figure 8b,c, at this resonance frequency, the amplitude of the near total
electric field is around 1 V/m. Hence, the total field is dominated by the incidence field, i.e. an
almost total transparency can be observed.

Figure 9 clarifies the physical meaning of the resonances at 8.4529344 and 9.4686726 THz
marked in figure 4—they correspond to the dipole-type dielectric disk modes, H6,1,0 and H8,1,0,
respectively, slightly perturbed by the graphene covers. Here, the first subscript is related to the
radial variation of the field, while the second one and third one take into account the azimuthal
and transversal variations, respectively. In figure 9a, ACS is provided for the considered GDG
disk and for a dielectric disk obtained by removing the graphene covers from the GDG disk
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Figure 9. Normalized ACS of the GDG disk with εr = 12(1 − j10−5), μr = 1, a= 50µm, τ = 0.04a, T = 300 K, trelax =
1 ps,μc = 1 eV, compared with the one of a dielectric disk obtained by removing the graphene covers from the GDG disk, for
varying values of the frequency and normal incidence (a), and total near electric field behaviour in the xy-plane at two dipole-
mode resonance frequencies for both the disk configurations and for E0 = 1ŷ V/m: E-field of the GDG disk at 8.4529344 THz (b),
E-field of the GDG disk at 9.4686726THz (c), E-field of the dielectric disk at 7.1846630 THz (d), and E-field of the dielectric disk at
8.4050380 THz (e). (Online version in colour.)

itself. As clearly shown in figure 9b–e, the modes on the GDG disk resemble the classical dipole
modes of the dielectric disk. In such a case, however, the resonance frequencies up-shift due to the
graphene covers. It is interesting to observe that, for the plasmon-mode dipole-type resonances,
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Figure 10. Normalized ACS of the GDG disk with εr = 12(1 − j10−5),μr = 1, a= 50µm, τ = 0.04a, T = 300 K, trelax =
1 ps and four values of the chemical potential (μc = 0.1, 0.25, 0.5, 1 eV), versus the frequency at the normal incidence. (Online
version in colour.)

the electric field spots develop along the incident electric field direction (figure 7b–e). While, for
the dipole-type dielectric disk modes, the electric field spots are along the incident magnetic field
direction.

Summarizing, at the normal incidence of the plane THz wave, the considered thin GDG disk
is able to support the plasmon-mode dipole-type resonances, starting from the ‘half-wave dipole’
mode P11, and the dielectric-mode dipole-type resonances, slightly perturbed by the presence of
additional elements. Overlapping these resonances is the effect of quasi-full transparency related
to the infinite slab mode resonance, S0, incorporated into the GBC.

Now, we want to show that the resonance frequencies of all these modes can be tuned by
changing the chemical potential. In figure 10, ACS of the GDG disk with εr = 12(1 − j10−5) is
plotted for four values of the chemical potential (μc = 0.1, 0.25, 0.5, 1 eV) and for varying values
of the frequency and normal incidence. As can be clearly seen, the resonance frequencies up-shift
by increasing the chemical potential.

(c) Grazing incidence
At the oblique or grazing incidence of the plane wave, all azimuthal harmonics are present in
the scattered field. This entails important changes in the spectral dependences of TSCS and ACS
of the GDG disk because the resonances on the modes of higher azimuthal orders (n > 1) can
be excited, with their frequencies tunable by changing the chemical potential. Such resonances,
in principle, have larger Q-factors and hence can be more interesting in applications related to
sensing and filtering.

To support this anticipation, in figure 11a,b, a comparison is shown between TSCS and ACS,
respectively, of the GDG disk with εr = 12(1 − j10−5) and two values of the chemical potential
(μc = 0.01, 0.1 eV), and a dielectric disk obtained by removing the graphene covers from the
GDG disk itself, when a plane wave impinges onto the disk surface at the grazing incidence
(θ0 = 90◦, φ0 = 0◦) with TE polarization and E0 = 1ŷV/m. Even in such a case, the resonance
frequencies up-shift by introducing the graphene disks and by increasing the chemical potential.
Indeed, for the marked frequencies, the total near electric field plotted in figure 11c–h, shows
the same WGM-like behaviour. It is interesting to observe that the peaks become weaker if the
chemical potential gets higher. This can be directly associated with a larger conductivity and
hence a smaller impedance of the graphene covers. This entails the reduction of the electric field
values at these covers, that is badly compatible with the plane wave field at the grazing incidence.
As a result, the excitation efficiency of such WGM-like modes reduces at higher chemical potential
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Figure 11. Normalized TSCS (a) and ACS (b) of the GDG disk with εr = 12(1 − j10−5), μr = 1, a= 50µm, τ = 0.04a,
T = 300 K, trelax = 1 ps and two values of the chemical potential (μc = 0.01, 0.1 eV), compared with the ones of a dielectric
disk obtained by removing the graphene covers from the GDG disk, for varying values of the frequency and grazing incidence
(θ0 = 90◦,φ0 = 0◦) with TE polarization, and total near electric field behaviour at the marked resonance frequencies for
E0 = 1ŷ V/m: E-field in the xy-plane at the WGM resonance frequency 6.3555136 THz of the dielectric disk (c), E-field in the
xz-plane at theWGM resonance frequency 6.3555136 THz of the dielectric disk (d), E-field in the xy-plane at theWGM resonance
frequency 6.4133325 THz of the GDG disk with μc = 0.01 eV (e), E-field in the xz-plane at the WGM resonance frequency
6.4133325 THz of the GDG disk withμc = 0.01 eV (f ), E-field in the xy-plane at theWGM resonance frequency 6.5123892 THz of
the GDG disk withμc = 0.1 eV (g), and E-field in the xz-plane at the WGM resonance frequency 6.5123892 THz of the GDG disk
withμc = 0.1 eV (h). (Online version in colour.)

values. Note that potentials, higher than 1 eV, have not yet been reported in publications even for
the best CVD samples.

For the sake of completeness, it is worth noting that, except for the transverse or slab mode
resonances, no other ones are observed at the grazing incidence for the TM polarization, i.e. if the
incident electric field is along the disk axis.

4. Conclusion
We have presented the model of the scattering and absorption of a plane electromagnetic wave
by a composite graphene–dielectric–graphene disk of small thickness. This model is based on
the reduction of the complexity of the problem, without the sacrificing of its three-dimensional
nature, with the aid of the shrinking of the disk thickness to zero but imposing the generalized
two-side boundary conditions of the resistive type. Here, the electric and magnetic resistivities
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Figure 11. (Continued.)

serve as coefficients and inherit the original thickness and dielectric permittivity of the filler
material. Then, an efficient numerical scheme, earlier developed for the scattering from PEC,
resistive (for instance, graphene), and dielectric disks can be applied, modified for the presence
of two graphene covers. It is based on the analytical preconditioning, i.e. the Galerkin projection

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

un
e 

20
22

 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220126

..........................................................

of the associated singular integral equations for the effective electric and magnetic currents on
the sets of orthogonal polynomials, which are the eigenfunctions of the most singular parts of the
operators involved. The code, based on such a scheme, is pointwise convergent as follows from
the Fredholm theorems.

Numerical analysis of the plane wave scattering and absorption by such a composite scatterer
shows that it behaves as a complicated open resonator, able to support natural modes of two
types: graphene disk plasmon modes, slightly distorted by the presence of the dielectric disk filler
and dielectric disk modes, slightly distorted by the graphene covers. All natural mode frequencies
can be efficiently tuned by varying the graphene chemical potential.

Additionally, the scattering analysis reveals the alternating regimes of damped reflection
(i.e. quasi-full transparency) or enhanced reflection near the frequencies of the natural modes
of the infinite layer of the same composition. The latter effect has been earlier observed in the
scattering from a bare dielectric disk. Due to the presence of graphene covers, in the case studied
here its frequency becomes tunable as well.

Among future perspectives, the presented technique will be generalized to exploit the
resonance behaviour and the tunability of composite disks involving graphene and dielectric
disks with different characteristics. The generalization is straightforward for symmetric with
respect to the median surface S structures, requiring only the adaptation of the effective
resistivities. In the more general case of non-symmetric structures, the problem can be simply
approached by considering even the cross-resistivity relating the effective electric and magnetic
currents in the equations (2.5a) and (2.5b).
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