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We analyse, using integral equations and earlier
developed in-house numerical algorithm, the
scattering and absorption of the H-polarized
plane wave by a metasurface consisting of a
double-layer grating of flat graphene strips placed
into a lossless dielectric slab. The algorithm is
meshless and its convergence is guaranteed
mathematically. It is a version of the method of
analytical preconditioning, namely, it uses the set
of weighted Chebyshev polynomials as expansion
functions in the discretization of hypersingular
electric field integral equation for the on-strip current.
Then the computational error is controlled by the
matrix size and can be reduced to machine precision.
Using this advanced tool, we plot the frequency
dependences, in a huge range from 1 GHz to 10 THz,
of the transmittance, reflectance and absorbance of
such a metasurface. This accurate analysis reveals
resonances on several types of natural modes, best
understood via visualization of in-resonance near
fields. Besides of plasmon-mode resonances, special
attention is paid to the ultra-high-Q resonances on the
lattice modes, which are absent on the free-standing
graphene strip gratings.
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1. Introduction
Among novel materials, which offer amazing functionalities in the shorter than microwave
wavelength ranges of electromagnetic-wave spectrum, special attention is attracted today to
graphene [1–3], thanks to its good and, moreover, electrically tuneable conductivity. Currently,
there are many approaches used for synthesizing and patterning of graphene including vapour
deposition, epitaxial growth, mechanical and chemical exfoliation, e-beam lithography, to name
a few [4–6]. Among epitaxial growth techniques, one can distinguish the growth on silicon
carbide (SiC) achieved by heating the substrate and growth of graphene as a result of catalytic
decomposition of hydrocarbons on metal surfaces and desorption of hydrogen on heated
substrates. However, some disadvantages of these methods including small domain structures
with the presence of steps and terrace edges, and also high cost of the substrates make them less
attractive. The alternative and one of the most prominent approaches of graphene production is
chemical vapour deposition (CVD) technique. It provides high-quality graphene with a controlled
number of layers on large area. CVD-grown graphene was used in [7] for fabrication of double-
layer graphene nanostrip arrays on a polished float-zone silicon substrate. Graphene nanostrips
were patterned with 100 keV electron beam lithography and etched in oxygen plasma.

Still, the cost of design and fabrication of micro and nanosize graphene components for the
applications in the terahertz and infrared ranges is usually high. Therefore, it is not a surprise that,
to reduce these costs, researchers try to perform as much preceding modelling as possible, usually
with the aid of commercial software. Still the available commercial codes, although attractive as
general-purpose instruments, usually do not offer any tool to systematically control their accuracy
and frequently suffer of the lack of convergence. Besides, many of them meet difficulties when
taking into account specific properties of graphene.

One of such properties is graphene’s ultra-small thickness: 1–3 nm according to experimental
data [3]. The introduction of such a nanoscale thickness is obligatory in many commercial
codes; however, it entails excessively dense meshing, drastically increases the computation time
and eventually spoils the accuracy (see Conclusions in [8]). However, from the viewpoint of
mathematical description, it is well justified to consider graphene as an imperfect (i.e. lossy)
conducting sheet of zero thickness. This is a fair simplification even in the deep ultraviolet
range, because here graphene’s thickness is still smaller than one-hundredth of the wavelength.
No surprise that the most widely recognized theoretical-physics model of graphene’s electron
conductivity, so-called Kubo formalism, was developed assuming zero thickness of graphene
and hence characterizes its surface (i.e. not volume) conductivity [9]. Therefore, it is natural to
consider the commercial code request of using the 1–3 nm thickness of graphene as a step back in
the adequate modelling, not justified by any reasonable physical considerations.

If one keeps this in mind when modelling the patterned graphene configurations, then
advanced computational techniques, such as [10–17], created earlier for the mathematically
accurate study of zero-thickness perfectly electrically conducting (PEC) and resistive scatterers,
attract attention. General principles of building convergent numerical codes have been reviewed
in [18]: they should be based either on the analytical regularization, i.e. partial inversion [11–
16] of the corresponding singular integral equations, or on their Nystrom-type discretization of
[10,17]. In either case, the size of the matrix to be inverted is the tool, which controls accuracy.
When the graphene is present, novel circumstance is that its surface impedance, i.e. electrical
resistivity, is not real, as it was usually assumed in the past for thinner-than-skin-depth metal
strips and patches, but complex-valued, with both real and imaginary parts depending on the
frequency and other non-electromagnetic parameters. Nevertheless, thanks to the Kubo formulae,
this dependence is known in analytical form and can be easily incorporated into any code, able to
analyse electromagnetic wave scattering from zero-thickness constant-resistivity configurations.

Besides of tunability, there is another very important electromagnetic property of graphene
that has no analogues for the PEC and constant-resistivity zero-thickness objects: its reactance
possesses inductive behaviour, i.e. it is positive if the time dependence is assumed to be exp(+jωt).
Thanks to this, infinite graphene sheet is able to guide a plasmon natural wave in the infrared
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and terahertz ranges, i.e. at two order lower frequencies than silver or gold layers, which guide
plasmon waves in the visible range [9,19–21]. Similar to metals, the length of the plasmon wave
on graphene is considerably smaller than the wavelength in the free space. This is important for
applications, such as development of infrared and terahertz range sensors [20,22], antennas [23]
and absorbers [24,25].

Inspection of recent publications shows that flat grating of parallel strips is one of the most
frequently analysed configurations of patterned graphene. This interest is explained by the
sharply displayed frequency dependence of the scattering and absorption characteristics of both
single graphene strips and strip gratings [20–30]. The reason is that, on each strip, the mentioned
above plasmon wave can be reflected from the edges and form standing wave that turns the strip
into a surface-wave resonator of the Fabry–Perot type. Therefore, the resonance strip width must
make finite number of plasmon half-wave lengths; that means that a 20 nm wide strip is resonant
in the infrared light and a 20 µm strip—in the subterahertz range.

Although suspended in the air, graphene strip gratings can be manufactured and show
superior chemical stability [31], usually such gratings are embedded into thin dielectric substrates
or placed on top of them. A dielectric substrate is itself an open resonator, although only if its
thickness is close or larger than the half of the wavelength in the substrate material. Adding
graphene strips brings, naturally, the mentioned above plasmon modes. Still a metasurface
combining graphene strip grating and dielectric substrate displays something absolutely new.
The accurate study of the plane-wave scattering [32] has revealed not only the resonances on the
plasmon modes and the slab modes, but also the ultra-high-Q resonances on the so-called lattice
modes. Such analysis became possible thanks to the analytical regularization approach, which
exploits the inversion of the static part of the associated operator.

In the present work, we address multiple-layer grating of graphene strips excited by the
H-polarized plane wave. This study builds on the preceding conference paper [33] however
presents additional numerical results, which add to the deeper understanding of resonances and
enables better grounded conclusions. We do not study the excitation of such a grating by the
E-polarized plane wave because the graphene-mode resonances are absent in that case.

Note that, according to experimental studies of [7], double-layer grating of stacked graphene
strips is a promising platform that offers new features in the design of infrared biosensors with
stronger and tuneable in wider range plasmonic resonances. Still the lattice-mode resonances,
apparently overlooked in [7], can be even more attractive due to their drastically larger Q-factors
and hence higher values of sensor’s figure-of-merit. This is equally valid for another novel sensor
configuration, where a single graphene strip grating is placed on the surface of a dielectric layer
backed with a continuous graphene layer [34].

2. Theory
The cross-sectional view of the considered configuration is depicted in figure 1. A finite number of
flat gratings made of identical graphene strips is placed, in symmetric manner, inside a dielectric
slab. Slab’s relative dielectric permittivity is εr and its thickness is Qh, where Q is the number of
gratings and h is the separation between them, while h/2 is the distance from the top and bottom
gratings to the top and bottom slab interfaces. The grating periods are d, and the angle of the
H-polarized plane-wave incidence is ϕ, counted from the x-axis. We assume that the geometry
and electromagnetic field do not depend on the coordinate z; hence, the scattering problem is
two-dimensional (2D). The time dependence is selected to be e+jωt and omitted.

As mentioned in Introduction, to address the electric properties of graphene strips, we suppose
them to have zero thickness and possess the surface electron conductivity σ , which is related
to the surface impedance as Z = 1/σ . It is widely adopted that graphene’s conductivity can be
characterized using the Kubo formulae [19]; therefore, we also use them here. In the earlier
papers, see [11–13], related to thinner-than-skin-depth metal scatterers, the same quantity was
also called electrical resistivity. Unlike metals at microwaves, the surface impedance of graphene
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Figure 1. Cross-section of a double-layer infinite grating of graphene strips placed inside a dielectric slab and excited by a plane
wave. (Online version in colour.)

is frequency-dependent and additionally varies under with temperature, chemical potential and
electron relaxation time.

Keeping in mind the applications related to the resonances on the plasmon modes, we consider
the case of the H-polarization, where non-zero components are Hz, Ex and Ey. Then the scattering
problem is formulated for the magnetic field and the electric field components are found from the
Maxwell equations. The total magnetic field is then presented as a sum

Hz = Hpr
z +

Q∑
p=1

Hsc(p)
z , (2.1)

where the primary field Hpr
z is the magnetic field in the presence of a bare dielectric slab (without

strips) excited by the incident plane-wave field defined in the half-space x < 0

Hinc
z = (1/ζ0)e−j(α00x+β0y), (2.2)

where α00 = k0 cos ϕ, β0 = k0 sin ϕ, k0 = ω
√

ε0μ0 = 2π/λ0 and ξ0 = ω
√

μ0/ε0 is the impedance of
the free space. To obtain Hpr

z , function (2.2) has to be completed with the reflected field in domain
1 and the transmitted and excited inside the slab fields in domains 2 and 3, respectively. The
latter fields are easily determined using the separation of variables; the corresponding expressions
involve the Fresnel coefficients and can be found, for instance, in [12].

To find the secondary field (i.e. the second term in (2.1)), we formulate the following boundary-
value problem. The total magnetic field has to satisfy 2D Helmholtz equation with coefficients k0
and k0

√
ε outside and inside the slab, respectively, a set of the transmission conditions at the

slab interfaces, and a resistive-type boundary condition on the graphene strips. The transmission
conditions request the continuity of the tangential field components, Hz and Ey, at x = 0 and
x = Qh. The boundary conditions on the strips, |y − ld| < w, l = ±1, ±2.., laying in the planes
x = xq = (q − 1/2)h, where q = 1, 2, . . . , Q, are

{
1
2 [Ey(xq + 0, y) + Ey(xq − 0, y)] = Z [Hz(xq + 0, y) − Hz(xq − 0, y)],
Ey(xq + 0, y) = Ey(xq − 0, y).

(2.3)
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Besides, to ensure the uniqueness of the solution, the edge condition and the radiation
condition for the secondary field at x → ±∞ are requested.

The periodicity of the on-strip boundary conditions, together with specific shape of (2.2),
enable one to look for the total field as a quasi-periodic function of y, Hz(x, y + d) = ejβ0dHz(x, y).
Then the field, scattered by each grating, can be expanded in terms of the Floquet series as

Hsc(p)
z (x, y) = −j

∞∑
l=−∞

ρ
(p)
l Φ

(p)
H,l(x) e−jβly, (2.4)

where ρl are unknown complex amplitudes of the diffraction orders (i.e. Floquet harmonics), and
βl = β0 + 2π l/d. Making use of the continuity of the tangential components of electromagnetic
field at x = 0 and x = Qh and the continuity of the tangential electric field at x = xp, the functions

Φ
(p)
H,l(x) are expressed via the functions

Ve
H,l( x) = α1lsin( α1lx) − jεrα0lcos(α1lx)

Vo
H,l( x) = α1lcos( α1lx) + jεrα0lsin(α1lx)

⎫⎬
⎭ (2.5)

and exponents of the same arguments, as given by equation (6) of [12]. As follows from the
Helmholtz equations, the wavenumbers along the y-axis, in the free space and in dielectric
domains, are, respectively

α0l = (k2
0 − βl)

1/2, Im α0l ≤ 0

α1l = (εrk2
0 − βl)

1/2, Im α1l ≤ 0.

⎫⎬
⎭ (2.6)

Note that the functions Φ
(p)
H,l(x) take into account the radiation condition at x → ±∞, according

to which the scattered field must behave as either outgoing or decaying wave. These functions
can be conveniently expressed with the aid of the slab characteristic functions, see [12,13,32].

Fourier transformation of the surface current density, Jc(q)
y (y) = Hz(xq + 0, y) − Hz(xq − 0, y), at

|y| < d/2, and the absence of the current on the slots allows us to obtain the following integral
representation of the coefficients in (2.4)

ρ
(p)
H,l = − ζ0

2d

∫w

−w
(Y(p)

H,l)
−1

Jc(p)
y (y′) ejβly′

dy′, (2.7)

where y = ws, y′ = w t and

Y(p)
H,l = 1

2j

[
Vo

H,l(xp)

Ve
H,l(xp)

+
Vo

H,l(Qh − xp)

Ve
H,l(Qh − xp)

]
. (2.8)

The use of (2.1), (2.3), (2.4) and (2.7) in the resistive conditions (2.2) leads to the integral
equations of the second kind for surface current function as follows:

Zζ−1
0 F(p)

H (s) +
Q∑

q=1

∫ 1

−1
K(pq)

H (s, t) F(q)
H (t) dt = G(p)

H , −1 < s, t < 1; p = 1, 2, . . . , Q, (2.9)

where the unknown function and the known kernel are given by, respectively

F(q)
H (s) = ζ0Jc(q)

y (y)ejβ0y, (2.10)

K(pq)
H (s, t) = jΔ

2εrk0d

∞∑
l=−∞(even)

χH,lΓ
(pq)

H,l/2 ejl(t−s)Δ, (2.11)

Δ = πw/d, χH,l = −jα1(l/2)d/π for l even and 0 for l odd, and coefficients Γ
(pq)

H,l are given by
equation (18) of [12]. The right-hand side of (2.9) contains the tangential component of the primary
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electric field on the pth strip surface

G(p)
H = j

εrk0
· dξH(x)

dx
|x=xp . (2.12)

It should be emphasized that, in the case of the H-polarization, the kernel function (2.11) is
an expansion of second derivative of the periodic Green’s function of 2D Helmholtz equation
in terms of the Floquet harmonics as basis functions. Therefore, the kernel of IE (2.9) is
hypersingular, although this property translates into the divergence of the series (2.11) in the
absolute-value sense.

To provide trusted results, discretization of the hypersingular equation (2.9) must lead to such
a matrix equation, the solution of which can approach the exact solution if the matrix order is
taken greater. To achieve this goal, we follow [12,13,32] and apply the method of regularization
based on the Galerkin moment method with judiciously chosen expansion functions. As such
functions, we use a set of orthogonal eigenfunctions of the hypersingular integral operator. As
discussed in [18], this procedure leads us to a Fredholm second-kind infinite-matrix equation.

Thus, we expand the unknown current functions as

F(p)
H (t) =

√
1 − t2

∞∑
n=1

f (p)
H,nUn−1(t), (2.13)

i.e. project them on the weighted Chebyshev polynomials of the second kind, Un−1( cos θ ) =
sin(nθ )/ sin θ . The weight in F(p)

H (t)provides the correct edge behaviour of the current, that is

Jc(p)
y = O(r1/2)as r → 0 (distance from the edge). Multiplication of both sides of (2.9) with

Um−1( s) =
√

1 − s2and integration from −1 to 1 in s (i.e. scalar product in the Galerkin procedure)
lead us to Q coupled infinite-matrix equations

Q∑
q=1

∞∑
n=1

(Zζ−1
0 κ̃H,mnδpq + κ

(pq)
H,mn)f (q)

H,n =
(π

2

)
G(p)

H δm1, (2.14)

where p = 1,2, . . . , Q; m = 1,2, . . . , δpq is Kronecker’s delta, and the other quantities are defined as

κ̃H,mn =
∫ 1

−1
Um−1(s)Un−1(s) (1 − s2) ds, (2.15)

κ
(pq)
H,mn =

∫ 1

−1

∫ 1

−1
K(pq)

H (s, t) Um−1(s) Un−1(t)
√

1 − s2
√

1 − t2 ds dt. (2.16)

Using the properties of the Chebyshev polynomials, it is easy to integrate in (2.15) explicitly

κ̃H,mn = 1

1 − (m − n)2 − 1

1 − (m + n)2 , if m + n even or 0 otherwise (2.17)

As seen from (2.17), the first term in (2.14) does not include δmn. Therefore, the regularized
character of (2.14) does not follow from the fact that the graphene strips are imperfect electric
conductors (Z �= 0). Showing this needs the extraction of the static singular part of the kernel
function at p = q, the analytical inversion of which is possible thanks to the properties of the
Chebyshev polynomials. Indeed, using the asymptotic behaviour ΓH, l/2∼1 at |l| → ∞, we rewrite

K(pq)
H (s, t) in (2.11) as follows:

K(pq)
H (s, t) = jΔ

2εrk0d
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
(t−s)2Δ2 +

∞∑
l=−∞

χ̃
(p)
H,l ejl(t−s)Δ, p = q

∞∑
l=−∞,even

χH,lΓ
(pq)
H,l/2 ejl(t−s)Δ, p �= q

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)

where the quantities χ̃
(p)
H,l involve finite sums of elementary functions and are given by equation

(28) of [12].
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Figure 2. Computational error in the absorbance as the function of the truncation number, at the fixed frequency and three
values of ratioN/L (a) and three values of the frequency andfixed ratioN/L (b). The slab and the double-layer grating parameters
are the same as in figure 3. (Online version in colour.)

Then, the integration in (2.16), with the account of the orthogonality of polynomials, enables
us to extract the Kronecker symbol, δmn

κ
(pq)
H,mn = π

2jk0wεr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
2
δmn − Δ2

4
χ̃

(p)
H,0δm1δn1 − mnjn−m

∞∑
l=−∞
(l�=0)

χ̃
(p)
H,l

l2
Jm(lΔ)Jn(lΔ), p = q,

−Δ2

4
χH,0δm1δn1Γ

(pq)
H,0 − mnjn−m

∞∑
l=−∞

(l�=0,even)

χH,l

l2
Γ

(pq)
H,l/2Jm(lΔ)Jn(lΔ), p �= q,

(2.19)

where Jm(·) are the Bessel functions.
Thus, taking into account (2.17)–(2.19), Q × Q block-type infinite-matrix equation (2.14) can be

rewritten as follows:

Q∑
q=1

∞∑
n=1

(δmnδpq + A(pq)
H,mn)f (q)

H,n = B(p)
H , p = 1, . . . , Q (2.20)

where

A(pp)
H,mn = 4 j k0wεr

mπ

Z
ζ0

κ̃H,mn − Δ2

2m
χ̃

(p)
H,0δm1δn1 − 2njn−m

∞∑
l=−∞,l�=0

χ̃
(p)
H,l

l2
Jm(lΔ)Jn(lΔ) (2.21)

A(pq)
H,mn = 4 j k0wεr

mπ
κ

(pq)
H,mn, p �= q (2.22)

B(p)
H = 2jk0wεrm−1G(p)

H δm1 (2.23)

The series over the summation index l, involved into (2.21), converge very quickly. In
computations, they should be calculated with accuracy, superior to the accuracy of solving the
matrix equation; this is ensured by a proper choice of truncation number, say L, which is always
larger than N. For all p and q, the matrix elements decay rapidly enough with indices m and n to

ensure the conditions
∑ ∑∞

m,n=1 |A(pq)
H,mn|2 < ∞ and

∑∞
m=1 |B(p)

H,m|2 < ∞. This means that (2.20) is a
Fredholm second-kind matrix equation [18]. Then, the convergence of the code based on (2.20)
follows from the Fredholm theorems, i.e. if the truncation number, say N, in the indices m and n
is taken larger, then the error with respect to N = ∞ gets progressively smaller [18].
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After solving (2.20) numerically, one can compute the Floquet harmonic amplitudes and all
the quantities characterizing the electromagnetic behaviour of in-slab graphene strip grating. The
equations for the transmittance, reflectance and absorbance are the same as (33) in [12].

In figure 2, we show the plots of the error in the absorbance as a function of the truncation
number, N, computed at several frequencies in the THz range and with several values of the ratio
N/L, as explained in the insets. The error is defined as E(N) = |A(N) − A(N + 1)||A(N + 1)|−1,
where A(N) is the absorbance computed at the truncation order N.

3. Numerical experiments
In the review of results that follows, the plots of the transmittance, reflectance and absorbance
have been calculated with at least four-digit accuracy in the studied range of frequencies. This
typically needs the Floquet series truncation order as L ≤ 100 and the truncation order of each
block of the matrix (2.20) as N ≤ 25. The graphene parameters are the same for all figures and
have been selected to correspond to those, for which the results are available in the literature,
namely, μc = 0.39 eV and T = 300 K. To emphasize the resonances, graphene electron relaxation
time is taken τ = 1 ps in most of the figures. However, as this value is approximately twice larger
than the good graphene samples have today (see [35]), we make a comparison with the plots
computed for τ = 0.5 ps. Thanks to the guaranteed convergence, plotting the frequency scans from
1 GHz to 10 THz with small step, necessary to capture all resonances, takes minutes of time with
a moderate desktop computer.

Figure 3 presents transmittance, reflectance and absorbance, in terms of the fractions of the
incident power, as a function of the frequency, for the H-polarized plane wave incident normally
(ϕ = 0°) on a bare dielectric slab with εr = 2.25 and the thickness of 70 µm (figure 3a), one-
layer graphene strip grating located in the homogeneous medium (figure 3b), and single-layer
(figure 3c,e) and double-layer (figure 3d,f ) graphene strip gratings, embedded into the same
dielectric slab.

The plots in figure 3a demonstrate the spectral characteristics of a bare lossless dielectric slab
without graphene strip grating (there is no absorbance in such a case). Here, a periodic sequence
of the low-Q-factor Fabry–Perot resonances is well visible, controlled by the slab thickness and
permittivity. We denote these modes and resonances as S1, to S7, counting from the lower
frequencies.

Figure 3b corresponds to the scattering of the THz wave by a single grating of graphene
strips with the width 2w = 20 µm and the period d = 70 µm, placed into infinite homogeneous host
medium with two values of dielectric permittivity. The moderate-Q resonances on the plasmon
modes of each strip are well visible. We denote them as P1, P3, P5, etc. The plots show how these
resonances shift to the red side, in frequency, if the relative dielectric permittivity of the medium
changes from 1 to 2.25.

Comparing these plots with figure 3c,d, corresponding to single-layer and double-layer
graphene strip gratings in dielectric slab with εr = 2.25 and h = 70 µm, one can see both dielectric-
slab-mode resonances and the plasmon-mode resonances. Since we assume that the dielectric
slab is lossless, the plots of absorbance demonstrate only the plasmon-mode resonances (red
curves).Q6

The lowest, in frequency, plasmon-mode resonance, P1, is found around 1.82 THz for the
double-layer grating; this is actually very close to the same-mode resonance on a single-layer
grating in the infinite host medium with εr = 2.25 (compare to figure 3b). This identification
follows from the portraits of the near-magnetic field, in absolute value, at the frequencies of the
two lower-order plasmon-mode resonances, shown in figure 4. Note that the intensities of the
plasmon-mode hot spots on two layers of strips are different, with the higher intensity found on
the frontal strips. This can be attributed to the fact that the rear-layer strips are slightly shadowed
by the front ones. Besides, at the frequencies larger than approximately 6 THz, the plasmon-
mode resonances fade off because of the increasing degradation of the electron conductivity of
graphene.
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Figure 3. The frequency spectra of the reflectance, transmittance and absorbance of the H-polarized plane wave normally
incident (ϕ = 0°) on a bare dielectric slab with εr = 2.25 and the thickness of 70 µm (a), one-layer graphene strip grating
located in the free space and in the medium with εr = 2.25 (b), one-layer (c,e) and two-layer (d,f ) graphene strip gratings
embedded in a dielectric slab with εr = 2.25 and the thickness of 70 µm. The strip width and period of the grating are 20 and
70 µm, respectively. Graphene parameters areμc = 0.39 eV and T = 300 K. The resonances on the natural modes are marked
with arrows. The electron relaxation time is τ = 1 ps (b–d) and τ = 0.5 ps (e,f ). (Online version in colour.) Q6

However, the plots for both single-layer and double-layer graphene strip gratings in dielectric
slab, in figure 3c,e and d,f, respectively, display additional very sharp peaks of reflection and
absorption. These ultra-high-Q resonances are connected to the lattice modes of a grating-
perturbed dielectric slab as a periodic open resonator [32]. We denote them as Gmn with m = 1,2,3
and n = 1,2,3,4,5. Here, the first index corresponds to the ‘parental’ Rayleigh anomaly and the
second index to the number of field hot spots across the slab.

To obtain a vision of the role of the electron relaxation time, τ , we present the same data for
two values of this parameter: τ = 1 ps in figure 3b–d and τ = 0.5 ps in figure 3e,f. The latter value
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is achieved today in experimental research with CVD graphene [34], while the former value is
still a matter of future, hopefully not distant. As one can see, greater mobility of electrons results
in sharper resonances, although their amplitudes are nearly the same in both cases. Besides, this
parameter plays greater role for the plasmon-mode resonances than for the lattice-mode ones.

The lattice-mode in-resonance magnetic field patterns are shown in figures 5–7 and
demonstrate different modal field symmetries.

For completeness of the understanding, we present, in figure 8, the near -magnetic field
patterns in the low-Q resonances on the dielectric slab modes S1 and S3. Their characteristic hot
spots stretch parallel to the slab, being slightly perturbed by the presence of graphene strips. Note
that, as visible in figure 3c,d, the slab resonance S3 overlaps with the plasmon-mode resonance P1
and they form a common broad peak, because their Q-factors are comparable. Such hybridization
is also visible in the near-field portrait in figure 8b. This behaviour changes drastically if a low-Q
resonance on the slab mode is close, in frequency, to a resonance on a very high-Q lattice mode.
In such case, the response of the in-slab grating demonstrates Fano-shaped double spikes and, if
two frequencies coincide, the effect of electromagnetically induced transparency.

Here, we remind that the lattice modes (also called the grating modes) are the natural modes
of all optical metasurfaces built as periodically structured open resonators. They were first
noted, apparently, in [36], and then largely forgotten; however, they are attracting great attention
today. This is because their ultra-high Q-factors are responsible for a number of amazing and
sometimes counterintuitive phenomena, such as ‘anomalous’ transmission through the metal
plates periodically perforated with small holes, and, vice-versa, extraordinary high reflection
from sparse periodic arrays of deeply subwavelength metal and dielectric wires, strips and
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particles [15,37–39], enhanced absorption in the case of lossy gratings, giant Kerr, Kerker and
Faraday effects [40–42], and efficient second harmonic generation in the presence of nonlinearity
[43]. The existence of the lattice modes is caused by the periodicity that is manifested in the
nearness of their frequencies to the Rayleigh anomalies. Still, if the host medium supports a
guided wave, then they are shifted from these anomalies by the spectral distance, dictated by the
wavelength of that wave of [32,36]. The lattice-mode properties, for the strip and wire gratings in
the optical wavelength range, were recently reviewed in [44]; another review, with emphasis on
experimental measurements, can be found in [45].

Note that the lattice modes do not exist on the flat zero-thickness PEC or graphene strip
gratings suspended in the free space or in the homogeneous host medium [26–29]. Computations
show that if εr → 1 or h → 0 then the resonances corresponding to them become narrower and
shift to the Rayleigh anomaly frequencies, which are f RA

m = cm/d at the normal incidence, and
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finally disappear. This is in full agreement with the theory of operator-valued functions [18]: if
such a function satisfies a Fredholm operator equation—in our case (2.20), then its complex poles
in terms of a parameter may appear to disappear only at the boundary of the analyticity in thisQ2

parameter. In our case, such boundary consists of the infinity (in the complex plane) and the
branch points, which are the Rayleigh anomaly frequencies. Therefore, the Q-factors of the lattice
modes of the in-slab infinite graphene strip gratings are controlled mainly by the slab optical
contrast and thickness and tend to infinity if either of these values tend to zero.

Another interesting effect is observed in the case of small separation h between the strip
gratings. This is the hybridization of the plasmon modes and splitting of the associated resonances
into doublets, where one peak corresponds to the symmetric-field mode and the other to
antisymmetric. As have been mentioned, the resonances are better resolved on the plots of the
absorbance as a function of the frequency. In figure 9, we present the frequency spectra of the
absorbance of the single-layer and double-layer gratings in a lossless dielectric slab, with several
values of the inter-layer distance, h. If the parameter h gets smaller, the plasmon peak P1 for the
one-layer grating shifts slightly in frequency however keeps its shape. By contrast, for the two-
layer grating, the reduction in the inter-layer distance leads to the splitting of the P1 peak into a
doublet.
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Figure 10. Near-magnetic field patterns at one period of the grating in the P1± plasmon-mode resonances at f 1 = 1.57 THz (a) Q6

and f 2 = 1.95 THz (b), marked by arrows in figure 9b. The slab thickness is 42µm (green curve in figure 9b). Other parameters
are the same as in figure 9. (Online version in colour.)

The near-field patterns in the two peaks of absorbance, associated with two hybrid plasmon
modes of orthogonal symmetries with respect to the slab median line, are presented in figure 10.

They demonstrate that the lower-frequency peak corresponds to the ‘supermode’ P1
+

, which
has the field, symmetric with respect to the median line, while the higher-frequency peak to the
antisymmetric ‘supermode’ P1

−. Note that the exact placement, in frequency, of the split hybrid
modes is controlled by the inter-layer distance h. This is in agreement with the experimental
observations reported in [7].

4. Conclusion
We have used a numerical code developed by us, based on the integral equations and MAR-
Galerkin technique, to analyse the scattering and absorption of the H-polarized plane wave by
a double-layer graphene strip grating placed into a dielectric slab. This analysis enjoys a fast
convergence, which is mathematically guaranteed, and provides a controlled accuracy. Thanks to
the efficiency and accuracy of our code, we have studied in detail the resonances not only on the
moderate-Q plasmon modes and low-Q slab modes but also, for the first time, the resonances
on the extremely high-Q lattice modes. We believe that the presence of various resonances,
different in nature, offers exciting engineering opportunities in the design of new generation
THz components. Besides, our study has confirmed that the plasmon modes of the double-layer
grating display hybridization into the doublets of symmetric and antisymmetric modes, if the
distance between the gratings is small enough. Similar hybridization takes place for the lattice
modes and associated resonances, which can have Q-factors, higher than for a single-layer in-
slab grating, even if the gratings are well separated. Note that such extremely high Q-factors
may induce a mistake in the interpretation of numerical results obtained with less accurate
computational instruments (see [46]) that the Q-factor can reach infinity (so-called bounded states
in continuum). Here, it is useful to keep in mind that purely real-valued natural mode frequencies
of the open resonators are prohibited by the Poynting theorem.
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