Opt Quant Electron (2007) 39:927-937
DOI 10.1007/s11082-007-9159-4

Mathematical analysis of the lasing eigenvalue problem
for the optical modes in a layered dielectric cavity
with a quantum well and distributed Bragg reflectors

Volodymyr O. Byelobrov - Alexander I. Nosich

Received: 19 July 2007 / Accepted: 20 November 2007 / Published online: 25 December 2007
© Springer Science+Business Media, LLC. 2007

Abstract  Optical modes and associated linear threshold values of material gain bringing
them to lasing are investigated for a VCSEL-type cavity with a quantum well, sandwiched
between two distributed Bragg reflectors. They are found as solutions to a specific novel
eigenvalue problem with the “active” imaginary part of the quantum well refractive index.
For the calculation of the Bragg mirror reflection coefficients, well-established method of
the transfer matrices is used. The presented results accurately quantify intuitively predictable
lowering of the modal thresholds for the modes whose lasing frequencies lay inside the reflec-
tors rejection bands. Besides, they demonstrate that this approach automatically incorporates
the account of overlapping between the active region and the modal E-field patterns and its
effect on the thresholds.

Keywords Bragg reflector - Eigenproblem - Laser - Microcavity - Threshold -
Transfer matrix - VCSEL

1 Introduction

Modern etching and epitaxial technologies operate mostly with flat material layers and enable
well-controlled fabrication of multilayered heterostructures. Thin active regions shaped as
quantum wells (QWs) or layers of random quantum dots and embedded in epitaxially grown
semiconductor microresonators are widely used in photonics. The area of applications of
such active cavities covers fundamental aspects such as alteration of spontaneous emission
characteristics in various systems and visualization of quantum optical phenomena, and also
device applications such as fabrication of vertical cavity surface emitting lasers (VCSELSs)
(Yu 2003; Piprek 2005; Streiff et al. 2003; Yang et al. 1995; Huffaker and Deppe 1997; Klein
etal. 1998; Noble et al. 1998; Chung et al. 2004; Zhang et al. 2006; De Leonardis et al. 2007),
microdisk lasers, and photonic-crystal membrane band-edge lasers (Campenhout et al. 2005).
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For example, in a VCSEL-type light-emitting device high-intensity optical field is usu-
ally confined by the top and bottom distributed Bragg reflectors (DBRs) composed of the
quarter-wavelength multilayers grouped in periodic pairs, and a few nanometer wide QW is
located inside a half-wavelength or wider cavity layer.

As known, there are several important physical mechanisms responsible for the lasing
in microcavities: transport of carriers, heating, and optical confinement, coupled together in
non-linear manner (Streiff et al. 2003). Accurate account of all of them is a hard task, and a
useful reduction of complexity is achieved through neglecting all non-electromagnetic effects
and viewing the optical field as a solution to the linear set of source-free Maxwell equations.

Until recently, such a linear modelling of microcavity lasers has implied exclusively the
calculation of the natural modes of the “cold” or, equivalently, passive open dielectric reso-
nators. Mathematically this means solving the time-harmonic Maxwell eigenvalue problem
with the outgoing-wave radiation condition at infinity for the complex-valued natural fre-
quencies or wavenumbers, k. Such eigenvalues form a discrete set and can be numbered,
say, by using the index n. In these analyses, the modes with the largest Q-factors have been
identified as the lasing modes (Yang et al. 1995; Huffaker and Deppe 1997; Klein et al. 1998;
Noble et al. 1998; Chung et al. 2004; Zhang et al. 2006; De Leonardis et al. 2007). The
eigenfunctions corresponding to these eigenvalues are the natural electromagnetic fields of
the cavity; they decay in time as e~ Mkt however grow in space as em&lR gar from the
cavity (c is the light velocity).

In general, cold-cavity modelling has proved to be an adequate way for predicting the
frequency of lasing, which is determined mainly by the cavity shape together with its size
and material and lies within the photoluminescence band of the bulk QW material system.
However, whilst being meaningful and useful modelling of laser as a cold cavity has very
important drawback. The lasing phenomenon is not addressed directly through the Q-fac-
tor—neither the presence of active region nor the specific value of material gain that is
needed to force a mode to become lasing is included in the formulation. Therefore direct
quantification of lasing thresholds and their dependence on the microcavity, QW and DBRs
geometry and composition has not been realized yet. For example, the threshold current for
the onset of lasing is known to be very sensitive to the location and size of current-injection
electrodes. It is also experimentally known that, in order to achieve ultralow room-tempera-
ture thresholds, a good overlap between the active region location and width and the cavity
natural-mode field is important. The mentioned features have still to be incorporated into the
linear electromagnetic model of the laser.

To determine the threshold of lasing, “hot” laser models dwell on the use of the rate equa-
tions and involve complicated non-linear descriptions (Yu 2003; Piprek 2005; Streiff et al.
2003). Unlike the mentioned studies, in this work we report the results of the direct quanti-
fication of the lasing spectra and associated thresholds of the modes in a laterally uniform,
i.e., one-dimensional (1D) model of the VCSEL-type layered microcavity equipped with a
QW by using a specifically tailored linear eigenvalue problem.

Modification of this model to the cavities with cascaded multi-QW active regions or those
incorporating the metallized layers is straightforward.

2 Problem formulation and basic equations

Mathematically, the lasing modes can be viewed as source-free solutions to the Maxwell
equations. We look for the non-attenuating time-harmonic electromagnetic field ~e =<,
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Fig. 1 Sketch of the VCSEL-type layered structure

where k = Rek > 0 and c is the light velocity, inside and outside a multilayer dielec-
tric medium schematically depicted in Fig. 1. It consists of the cavity whose width is w,
sandwiched between two DBRs made of Ny and Np pairs of high and low-index lay-
ers whose thicknesses are wy and wy, respectively. Inside the cavity a QW sits of the
width w,.

As we assume that the electromagnetic field does not vary along the axes x and gz, it
can be characterized by a scalar function E, which is the E, field component. Off the layer
interfaces, this function must satisfy the Helmholtz equation, [A + k2v2(y)]1E(y) = 0. Here,
step-like function v(y) is assumed 1 outside the cavity and DBRs, i.e., in the lower and upper
half-spaces filled with air; inside the layered structure it takes the values corresponding to
the refractive indices of semiconductor cavity, o, and the high and low-index materials of
the DBR pairs, o and oo . All o5 (s = ¢, H, L) are assumed real, i.e., we neglect the absorp-
tion. Following (Smotrova and Nosich 2004; Smotrova et al. 2005), we will assume that
v = o, — iy is complex-valued with a negative imaginary part inside the QW region that
corresponds to the active material. The optical field tangential components must satisfy the
continuity conditions at the layer interfaces and obey the outgoing wave radiation condition at
infinity (]y| — 00). Keeping in mind source-free solutions to this boundary-value problem,
we seek its eigenvalues as a discrete set of pairs of real-valued parameters, (k,, y;,,). The first
of them is the normalized frequency of lasing, k = kw, and the second is the associated
threshold material gain. Note that the gain per unit length, frequently met in the Fabry-
Perot cavities descriptions, is obtained as g = ky. This formulation is different from the
“classical” formulation of the eigenvalue problem for an open cavity with the complex-
valued frequency k being eigenvalue parameter. Note that LEP is still a linear problem,
however takes into account the presence of the active region and enables one to extract the
thresholds, in terms of y, in addition to the natural-mode wavelengths. This is more adequate
to the lasing than determining the Q-factors (Q, = |Rek,/Imk,|) and can be qualified as
building a “warm” model of laser. Such a model was systematically introduced in Smotrova
and Nosich (2004) and in greater details in Smotrova et al. (2005), although similar ideas
have been also expressed elsewhere (e.g., in Klein et al. 1998; Noble et al. 1998; Campenhout
et al. 2005).

For a generic DBR-based microcavity with a QW shifted by arbitrary distance b from the
centre, our 1D LEP can be reduced to the following equation:
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where Rp 7 are the Fresnel reflection coefficients of the bottom and top DBR, respectively.

If a lossless cavity with a symmetrically embedded QW (b = 0) is sandwiched between
two identical DBRs (Rp = Rr = Ry) opening into free space, then Ry = R, = R and (1)
splits to two independent equations for the symmetric and anti-symmetric modes, respec-
tively:

Roei’(‘xu(l_wu/wc) + R,
1 —+ eikac(l_wu/wc)RoRa ’

e~ ik(@c—iy)(wa/we) 4 p — 0, R= 2)

We emphasize that the LEP and Q-factor problems cannot be reduced to each other by
transformations and changes of variables. To establish a link between them, one should be
reminded that in the latter case each complex-valued eigenfrequency, k, = Rek,(y) +
ilmk, (y), is a continuous function of the parameter y. Hence, one can look for a specific
value, y, that brings Imk, (y) to zero, and consider this as the threshold of lasing—this
approach was adopted in (Klein et al. 1998; Noble et al. 1998).

Note that looking for a mode Q-factor in a cavity with an active region (like in Ripoll et al.
2004) makes little sense, because it may become arbitrarily large depending on the nearness
of the gain y to the threshold value, at which the Q-factor is infinite. This circumstance cannot
be eliminated so far as we assume the harmonic time dependence and neglect nonlinear satu-
ration. Still (Ripoll et al. 2004) is important as it shows how material gain, y, can be expressed,
by using the two-level model, via the parameters of charge carriers and the pump power.

3 Lasing spectra and thresholds for the simplest cavity

To demonstrate the potentials of the LEP analysis, consider first one of the simplest con-
figurations—a dielectric slab in free space (no DBRs), with a symmetric QW of varying
width inside the slab. In this case, we can use (2) and put Rg = (oc — 1)/(ac + 1). We
have computed the dependences of the lasing frequencies and thresholds on the width of the
QW inside the cavity by solving (2) numerically. Here, we apply the two-parameter Newton
method presented in (Smotrova et al. 2005) to find the roots in terms of («,,, ;). These results
are shown in Figs. 2 and 3.

Asymptotically, i.e.,forn > 1,theroots of characteristic Eq. 2behave ask, =7 (n + 1) /c,
and y, = [k, (wg/ w)] (e + 1 /(ae. — 1)]. This behaviour is generally visible for the
plots in Figs. 2 and 3, where the lasing frequencies remain basically unchanged while the
thresholds grow up in inverse proportion to the width of QW. For instance, if the QW width
is 1/10 of the cavity width, the threshold of the mode with n = 10 is approximately 10 times
higher than for the same mode in the uniformly active cavity. The oscillations on the curves
correspond to the better or worse overlapping between the active layer and the nth mode
E-field pattern.

As another example, we have computed dependences of the lasing thresholds and fre-
quencies on the position of thin QW (w, = 0.1w,) in the same simplest cavity with respect
to its centre, for the modes withn = 10, 11, 12, 13. Asitis seen in Figs. 4a and 5a, the modal
thresholds fall and grow conformably to the location of the QW at the humps and zeros of
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Fig. 2 Dependences of the symmetric mode frequencies (a) and thresholds (b) on the relative width of the
centred QW in a GaAs cavity suspended in the air. The cavity refractive index is 3.53 and modal index is
explained in the inset
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Fig. 3 The same as in Fig. 2 but for the antisymmetric modes

the modal E-field absolute value in the cavity. The frequencies vary in similar oscillating
manner however within less than 1% margin around the mean value—see Figs. 4b and 5b.

Note that in Fig. 4 where the even (i.e., having symmetric E-fields with maxima at y = 0)
modes are presented, placing the QW in the centre of cavity leads to the minimum threshold.
While in Fig. 5 where the odd (anti-symmetric E-fields with zeros at y = 0) modes are
depicted, this results in the maximum threshold. Although such a result may seem obvious,
we emphasize that here the modal thresholds are obtained directly and without resorting to
the “hot-cavity” nonlinear theories.

Moreover, this is a clear demonstration of the fact that the account of overlapping
between the active region and the modal E-field pattern is very elegantly built into the
LEP formulation. This is something not tractable within the Q-factor analysis of the passive
cavity.
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Fig. 4 Dependences of the symmetric mode thresholds (a) and frequencies (b) on the relative distance
between QW and cavity centre. The frequencies are normalized by their maximum values, k19 = 9.82239

and k17 = 11.59021
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Fig.5 The same as in Fig. 4 but for the anti-symmetric modes having k11 = 10.70576 and k13 = 12.47541

4 DBR treatment with the transfer matrix approach

The goal of this section is to give a brief overview of the solution to the auxiliary prob-
lem about the transmission and reflection of the plane wave normally incident at arbitrary
multilayer dielectric structure located in free space, as shown in Fig. 6.

Among several equivalent approaches, the transfer matrix method is used most frequently.
It originates from the century-old ideas (see Born and Wolf 1968 and references therein);
therefore we will not stop on the details here. Some recent refinements of this approach can
be found in Kim et al. (1992) and Corzine et al. (1991). The matrix of the transformations of
the complex amplitudes of the plane waves normally incident on the first boundary of layers,
T(ap/a1), is introduced as

ao) ai _ 14z 1—¢
(bo)—f(ao/al)(bl), ’(Z)—z(l—z 1+Z). 3)
The transfer matrix for the whole N-layer structure can is obtained as a product of partial

transfer matrices, 7 («; /c;4+1) and diagonal propagation matrices A («;kd;), namely
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Fig. 6 Multilayer structure for the auxiliary problem

P=(M1
P21

This is the matrix linking together the waves outside of the layered structure as

N—-1 .
l —1X
iZ) =t(ao/or) - [ Ateskds) - t(@ifair). A=7 ((e) 2) @

i=1

ao _ an
()=7() ®
Therefore the reflection and transmission coefficients are given by
R =bo/ao = p21/pn1, T =an/ao=1/pn. (6)

To illustrate this approach, consider a layered DBR structure consisting of pairs of GaAs
and Gap gAlp2As layers having refractive indices oy = 3.53 and o7, = 3.08, respectively.
Assuming that this structure is immersed into air, we may compute the reflection coefficient
of the incident plane wave by using (3)—(6). Note that conservation of energy demands that
IR?>+|T1>=1.

The results are shown in Fig. 7. They demonstrate, as expected, that the DBR has a number
of rejection frequency bands, whose locations and widths are determined by the composition
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Fig. 7 Reflection coefficient |R| versus the normalized frequency for DBR consisting of 20 pairs of layers,

wpy /wy, = 1.16 (a) and the same value versus the number of pairs of quarter-wavelength-width layers for the
normalized frequency k = 10.67 (b)
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of DBR pairs—see Fig. 7a. Note the presence of such a band around the normalized frequency
k = 10.67. Inside the rejection band, the transmission coefficient exponentially decreases
with increasing the number of DBR pairs that leads to the corresponding growth of reflection
coefficient—see Fig. 7b. For example, this value for the DBR having 40 pairs of layers equals
t0 0.99998.

5 Effect of DBR on the lasing thresholds and frequencies

Now we may come back to the lasing in a layered microcavity equipped with an active region
and see how the use of DBR effects the thresholds and frequencies of lasing modes. This
means that we will study the LEP for the corresponding configuration. Consider a cavity with
the centred QW active region having the width w, of 1/10 of the cavity one, w,, and placed
between two identical DBRs opening into the air. Material composition of the DBRs is the
same as in the previous section; the cavity is of GaAs (¢, = 3.53), and the complex-valued
index of the QW is assumed to be v = 3.53 — iy, where y is eigenvalue. We apply the trans-
fer-matrix method to calculate the DBR reflectivities and the two-parameter Newton method
mentioned above to find the roots of (2) in terms of (k,, ). These results are shown in
Figs. 8a—d as points on the (k, y) plane.

For the modes, whose frequencies happen to get into the DBR rejection bands, one can
see the lowering of the thresholds. For example, this is obvious for the mode n = 11 in
Fig. 8a, whose normalized frequency is approximately x1; = 10.67 (compare to the fre-
quency scan of R in Fig. 7a for a single DBR mirror of the same composition).

However the thresholds of the neighbouring modes, which lay off the rejection band of
DBRs, do not feel their presence or can even get higher than the same values for the “bare”
cavity (i.e., without DBRs). This can be explained by the effect of the pulling of the E-field
into the DBRs and by the corresponding worthening of the overlap between the modal E-field
of the thin QW active region.

Table 1 contains precise values of the lasing frequencies and thresholds of the lowest-
threshold modes in each of the (a) to (d) sub-figures of Fig. 8.

If a cavity mode has the frequency lying inside of a DBR rejection band, its threshold
decreases exponentially to the value determined by the number of DBR pairs (Fig. 9a), while
the frequency variation is very small as it is well seen in Fig. 9b.

Table 1 Minimum-threshold mode characteristics for the OW-equipped cavities with DBR compositions
presented in Figs. 8a—d

(a) wy = 79.63 (b) wyy = 112.6 () wy = 93 (d) wy = 69.75
Wi, = 69.49 wp, =279 wp, = 46.5 wp, = 69.75

n=11 «=10.67964 n=6 «k=0622957 n=10 « =9.78965 n=5 «=25.33983

y = 0.00771 y = 0.07291 y = 0.01544 y = 0.02537
n=15 K« =1423951 n=6 K =6.22978
y = 0.00498 y = 0.0152
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6 Conclusions

We have studied the novel 1D lasing eigenvalue problem for the modes in a VCSEL-type
layered dielectric structure containing a cavity, a QW active region, and two DBRs open-
ing into the air. The characteristic equation has been derived using the Helmholtz equa-
tion with outgoing radiation condition below and above the layers and the transfer-matrix
method. Numerical solutions have been obtained, in particular, for the symmetric and anti-
symmetric lasing modes in the symmetrical geometry with the centred QW occupying 1/10
of the cavity and two identical DBRs. Computations have shown that the modes, whose
frequencies in stand-alone cavity happen to lay in the rejection bands of the DBRs, obtain
lower thresholds when placed between the reflectors. Here, the mode frequency weakly
depends on the number of pairs of layers in DBR however the threshold goes down exponen-
tially. The novelty of our study lies in the direct quantification of lasing thresholds instead
of the previously studied Q-factors of passive cavity modes. This is achieved by using a
specifically tailored electromagnetic eigenvalue problem, i.e., the LEP, with exact boundary
and radiation conditions.

This approach can be easily adapted to arbitrarily-layered lasing geometries, e.g., cavities
with multiple QWs, additional substrates and superstrates, noble-metal claddings, etc. The
considered layered geometry can be further employed as a model of the host medium for
periodically structured active regions, which are actively investigated today.
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