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Abstract: We investigate the H- and E-polarized natural modes of infinite flat grating of
graphene strips lying on dielectric-slab substrate. The conductivity of graphene is modelled
using the quantum-theory Kubo formulas, while the substrate material is assumed to have gain
that offsets the radiation and ohmic losses and allows the modes to reach the lasing threshold. We
look for the frequency and the gain index threshold value, specific to each mode, as eigenvalues.
To find them, we reduce each field problem to a dual series equation for the complex amplitudes
of the Floquet spatial harmonics that we analytically regularize based on the inversion of its static
part. This results in a Fredholm second-kind infinite determinantal equation for eigenvalues.
Increasing the matrix truncation number guarantees the convergence of these quantities to their
exact values. Our findings reveal that the lowest thresholds are associated with the lattice modes
and that those of the H-polarized plasmon modes can be controlled by graphene’s chemical
potential within the factor of three.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Visible and infrared range lasers are various and since recently a promising trend in their
development is the use, as working modes, the so-called lattice modes of various periodic arrays
[1,2]. Such lasers are able to combine very low emission thresholds and high directionality.
Here, the most frequently met configuration is a two-periodic array of noble metal nanoparticles,
laying on the flat substrate or embedded into the layer of the gain material [3–9]. As a simpler
alternative, one-periodic gratings, i.e., noble metal nanostrip arrays also attract attention [10,11].
It should be noted that in some of these works the lattice modes are incorrectly called the “lattice
plasmon modes.” In reality, their nature is connected solely to the periodicity – therefore, no
surprise that all-dielectric laser designs with the lattice modes are also under active discussion
[2,12].

From the experiments, it is visible that finite gratings are able to demonstrate sharp resonances
on the lattice modes, and the larger the gratings, the sharper the resonances. This observation is
in line with theoretical analyses of the visible light scattering from finite arrays of noble-metal
strips and wires [13–15]. To have high Q-factors of such resonances on these arrays, the number
of periods in finite grating should be counted in many tens or hundreds.

In the design of the lattice-mode lasers, one can always find the active regions shaped as
substrates or superstrates, which contain either internal quantum wells or quantum dot layers or
the dye molecules. Experiments show that in the presence of the pumping, the natural modes
of such open cavities can be brought to the threshold of the lasing, which can be characterized,
from the viewpoint of theory, by the real-valued eigenfrequency.
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A usual approach to study the natural modes of the laser cavities has been the classical
complex-frequency eigenvalue problem, where the presence of active regions is neglected and
considered are the modes of the passive open resonators. This approach is, however, not fully
adequate because the existence of the mode-specific threshold gain in the active region is not
characterized.

To overcome this deficiency, the introduced in the 2000s Lasing Eigenvalue Problem (LEP)
approach takes full account of the active region and uses modified eigenvalues [16–18]. Instead
of the complex frequencies, here they are the pairs of the real-valued numbers, the frequency
and the material gain index (which is imaginary part of the complex refractive index in the
active region). Such a modification is adequate to the lasing because the natural-mode field
does not decay in time (stationary emission) and the condition “mode gain = mode losses” is
automatically satisfied [16]. This scheme has been applied to microcavity lasers and also to
plasmonic nanolasers - silver tube [19] and silver strip [20] in circular quantum wire, and to
infinite grating of alternating circular silver and quantum wires [21].

In this work, our goal is to apply the LEP to the accurate analysis of the threshold conditions
for the modes of the graphene strip grating on flat substrate made of the gain material (Fig. 1).

Fig. 1. Infinite flat graphene strip grating laying on dielectric substrate (a) and its cross-
sectional view with the notations used (b).

As known, graphene has very high electron mobility, tunable by DC bias and characterized by
the Kubo approach [22]. Today, this ultrathin material can be controllably patterned into a micro-
or nanosize strip gratings using the molecular-beam epitaxial (MBE) technology [23].

Therefore, no surprise that the gratings made of graphene strips or disks placed on or inside
dielectric slabs are typical scattering and absorption configurations, which have already important
applications in the filtering, sensing, and modulation [24–27]. Theoretical investigations have
revealed complicated frequency-selective behavior of such gratings, where the resonances exist
on various type modes including the H-polarized plasmon modes of graphene elements. The
plasmon-mode frequencies scale down with the size of patterned graphene elements, thus they are
found in the infrared if the size is on the nanoscale and in the THz range if it is on the microscale.
Additionally, these resonance frequencies can be tuned by changing the chemical potential of
graphene that scales with DC bias.

Since the 2020s, graphene plasmons gained attention for building the lasers, although a first
vague proposal of such type was published earlier [28]; other potentialities are found in review
[29]. More recently spherical-particle and circular-wire laser configurations fully covered with
graphene were theoretically considered in [30,31]. Further, the LEPs for a dimer made of two
graphene-covered circular quantum wires and for such a wire loaded with centrally placed flat
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graphene strip were studied in [32] and [33], respectively. These works have demonstrated that
such configurations are composite open resonators, which support natural modes of two families
– plasmon modes of graphene covers and dielectric-particle modes of non-graphene elements.
The former modes have lower frequencies that the latter ones, and their thresholds are also lower
if the cavity size is less than a few micrometers.

The LEP for a graphene strip grating on a substrate can be treated with many techniques; here,
the method of analytical regularization [34] occupies special place. We follow [35] and invert
the static part of electromagnetic-field problem using, in H-case, the explicit solution of the
Riemann-Hilbert Problem (RHP) in the complex calculus and, in E-case, the Inverse Discrete
Fourier Transform. The main merit of analytical regularization is the mathematically guaranteed
convergence of the final code with progressively larger matrix truncation numbers; additionally,
filling in the matrix needs only elementary functions.

This work builds on the preceding short conference papers [36,37], which have been significantly
broadened and extended in the details of derivations of the basic equations and in the mode
characteristics numerical analysis.

2. Casting the eigenvalue problem to determinantal equations, H-case

We consider the 2-D LEP for a harmonic in time (e−iωt, with the cyclic frequency ω) H-polarized
electromagnetic field in the configuration presented in Fig. 1. The grating of zero-thickness
graphene strips is assumed infinite in x and lies on the top interface (y= 0) of the flat dielectric
substrate. The strip width is d, the period is r, the substrate thickness is h, and its relative
dielectric permittivity is ε = ν2 = (α − iγ)2 . Here, the refractive index α is assumed known
and the gain index γ>0 is unknown. In the H-polarization case, if there is no incident field,
we obtain the following boundary value problem for the magnetic field z-component function,
Hz(r⃗) = H(r⃗), r⃗ = (x, y): it has to satisfy (I) 2-D Helmholtz equation inside and outside the
substrate, with wavenumbers kν and k = ω/c = 2π/λ, respectively, where λ is the wavelength,
and (II) the set of the boundary conditions, which include resistive-sheet boundary conditions at
the graphene strips, i.e., at r⃗ ∈ M : {y = 0; |x + np|<d/2; n = 0,±1, ..},

E(1)
x − E(2)

x = 0, E(1)
x + E(2)

x = 2Z Z0[H(1) − H(2)], (1)

where Z0 =
√︁
µ0/ε0 is the free space impedance and the normalized complex-valued graphene

surface impedance is,
Z(ω) = Z −1

0 (σintra + σinter)
−1 (2)

Here, the conductivity terms are given by

σintra =
iΩZ0

ω + iτ−1 , Ω =
q2

ekBT
πℏ2Z0

{︃
µc

kBT
+ 2 ln

[︃
1 + exp

(︃
−
µc

kBT

)︃]︃}︃
, (3)

and τ is the electron relaxation time, qe is the electron charge, T is the temperature, kB is the
Boltzmann constant, ℏ is the reduced Planck constant, and µc is the chemical potential. The
interband term is expressed as integral of known functions, however, has a simple approximation
valid if µc>>kBT (at room temperature, T = 300 K, kBT = 0.026 eV),

σinter =
iq2

e
4πℏ

ln
2µc − (ω + iτ−1)ℏ
2µc + (ω + iτ−1)ℏ

(4)

Note that |σintra | ≫ |σinter | for the frequencies, lower than certain µc-dependent value, which
lays in the near infrared or visible-light range (see [32]). If the interband term is neglected,
then, according to (3), ImZ<0 (if the time dependence is chosen as e−iωt) that is known as
inductive impedance behavior - then infinite sheet of graphene can support the propagation of the
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plasmon wave [22]. However, close inspection of the Kubo expressions (3) and (4) shows that
the imaginary parts of intraband and interband conductivities have opposite signs. Therefore, in
principle, at extremely high frequencies where the latter one overweighs the former (see above),
the plasmonic nature of graphene gets spoiled.

Besides (1), the tangential field components H and Ex have to be continuous across the slots,
i.e., at r⃗ ∈ S : {y = 0;−∞<x< +∞}\M, and across the whole lower interface, y= - h.

Finally, the function H has to satisfy (III) the radiation condition, i.e., at y →∞, it must contain
only the outgoing waves, and (IV) the condition of local finiteness of power, which determines
the edge behavior of H: it must tend to zero as a square root of the distance to the strip edges.
The conditions (I)-(IV) are inherited from the time-harmonic wave scattering from a passive
scatterer (no active region, γ = 0), with real-valued k, where they guarantee the uniqueness of the
scattered-field function because real k cannot be an eigenvalue. When studying the LEP for the
natural modes of the grating with an active region, we look for the now allowed real-valued k,
therefore, the same conditions are imposed.

From the grating periodicity and Floquet theorem, it follows that the field is a quasi-periodic
function of coordinate x: H(x + p, y) = eiβ0pH(x, y), where β0 is the field phase shift on single
period (a.k.a. Rayleigh parameter). Therefore, in each domain of Fig. 1 this function can be
sought in the form of the Floquet-Rayleigh series of space harmonics,

H(1) =

∞∑︂
n=−∞

anei(Gny+βnx), y>0, (5)

H(2) =

∞∑︂
n=−∞

(bneiGsl
n y + cne−iGsl

n y)eiβnx, 0>y> − h, (6)

H(3) =

∞∑︂
n=−∞

dnei(−Gny+βnx), y< − h (7)

where an, bn, cn, dn are unknown Floquet harmonic amplitudes, βn = β0 + 2πn/p, and the
other dimensionless notations are Gn = (k2 − β 2

n )
1/2, Gsl

n = (k2ν2 − β 2
n )

1/2. Note that the
wavenumbers k = ±βn (however, not k = ±βn/ν) are the field branch-points; they are known as
the Rayleigh Anomalies (RAs).

The Rayleigh parameter β0 determines the propagation angle, φ : cos φ = β0/k, of the 0-th
Floquet harmonic with respect to the x-axis. In the laser experiments, the pumping is usually
arranged with a wide beam (flood pumping), so that all periods are in the same conditions.
Therefore, we will further assume that β0 = 0, so that the 0-th harmonic radiates in the normal
direction; this restriction, however, is not critical.

To find the mode-specific LEP eigenvalue pairs (frequency and gain index), we substitute
Floquet series into the boundary conditions, and reduce this problem to a dual series equation
(DSE) for the coefficients xn = gnan/Γn,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞∑︁
n=−∞

xn |n|einφ =
∞∑︁

n=−∞
xn∆neinφ , θ< |ϕ| ≤ π,

∞∑︁
n=−∞

xneinφ = 0, |ϕ|<θ,
(8)

where
∆n = |n| + i(1 + ε)(Γn + κZ), (9)

Γn =

[︄
1
gn

−
ε

gsl
n

(gsl
n − gnε)e2igsl

n ξ + (gsl
n + gnε)

(gsl
n − gnε)e2igsl

n ξ − (gsl
n + gnε)

]︄−1

, (10)

an gn = (κ2 − n2)1/2, gsl
n = (κ2ε − n2)1/2, κ = p/λ, ϕ = 2πx/p, θ = πd/p, ξ = 2πh/p.
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The left-hand part of (8) does not depend on the frequency; it forms RHP on the unit circle
in the complex plane, solution of which is known and expressed via the Plemelij-Sokhotskii
formulas. This allows us to perform analytical regularization of DSE (5), based on the inversion
of the static part of the grating in free space problem. All details of this procedure, which makes
use of the edge condition, can be found in [34,35].

When applied to (5), this static-part inversion yields an infinite matrix equation,

xm +

∞∑︂
n=−∞

Am,nxn = 0, m = 0,±1,±2, . . . (11)

Am,n = ∆n(k, γ;α, p, h, µc, τ)Tmn(θ), (12)

where functions Tmn(θ) are expressed via the Legendre polynomials Pm of the argument
u = − cos θ, see [35,36],

Tmn(θ) =
(−1)m+n

2(m−n) [Pm(u)Pn−1(u) − Pm−1(u)Pn(u)], m ≠ n, (13)

T00(θ) = − ln 1
2 (1 + cos θ), Tmm(θ) =

1
2 |m |

[︂
1 +

∑︂ |m |

s=1
ts(u)Ps−1(u)

]︂
, m ≠ 0, (14)

t0 = 1, t1(u) = −u, ts(u) = Ps(u) − 2uPs−1(u) + Ps−2(u) (15)

The large-index asymptotics of the Legendre polynomials, together with observation that, if
n → ∞, then ∆n = O(1) + O(e−|n |2πh/p) + O(κ2/|n|), allow seeing that

+∞∑︂
m,n=−∞

|Amn |
2<∞, (16)

Hence, (11) is a Fredholm second kind matrix equation in the space of sequences l2.
Further, by introducing the combinations x±n=xn±x−n, n = (0)1, 2, . . . and coefficients ς0 = 1/2

and ςn>0 = 1, we split both the DSE (5) and the matrix Eq. (11) to two independent equations for
the fields, which are symmetric (even) or anti-symmetric (odd), in the coordinate x, respectively,

x±m+
∞∑︂

n=(0)1
A±

m,nx±
n = 0, m = (0), 1, 2, . . . (17)

A±
m,n = ςn∆n(k, γ;α, p, h, µc, τ)[Tmn(θ) ± T−m,n(θ)], (18)

These matrix equations are also of the Fredholm second kind. Therefore, their infinite-
dimension determinants exist as functions of all geometrical and material parameters of the
problem. This means that the LEP eigenpairs can be sought for as the characteristic numbers,
i.e., the roots of determinantal equations,

D±(k, γ) = Det∥δmn − ςn∆n(k, γ)(Tmn ± T−m,n)∥
∞
m,n=(0)1 = 0, (19)

where δmn is the Kronecker symbol. Then, due to the Fredholm theorems for operator-functions,
characteristic numbers of (17) are discrete on the plane (k, γ) and each depends continuously on
the problem parameters. Moreover, Fredholm theorems guarantee that the characteristic numbers,
found from the truncated determinantal equations for the x-even and x-odd modes, converge to
the exact values with larger truncation numbers N [38]. Note that the matrix elements in (17)
depend only on the elementary functions and can be quickly computed with arbitrary accuracy.
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Still, it is important to see the rate of convergence as it is the rate that determines what value
of N is needed to provide the required accuracy. Therefore, we have defined the error as follows:

err(N) =
[︁
|fN − fN+1 |

2 |fN+1 |
−2 + |γN − γN+1 |

2 |γN+1 |
−2]︁ 1/2 (20)

and plotted it as a function of N, for various modes of the considered laser configuration.
Presented further in this paper are the data on the modes of two configurations, the first

of which has “wide” strips, d = 14 µm, p= 70 µm (so that d/p= 0.2), h= 10 µm, µc = 0.39 eV,
τ = 1 ps. The numerical analysis in this case has been conducted with the truncation number
N = 50. This choice is based on the numerical tests shown in Fig. 2, where the plots illustrate the
dependence of the error on the truncation order for the plasmon modes of the graphene strips and
the lattice modes (the slab modes errors have similar behavior and are not shown here).

Fig. 2. Dependences of the computation error in the LEP eigenpairs for the plasmon modes
(a) and the lattice modes (b) on the matrix truncation number, for the parameters as indicated.

As visible, N = 50 ensures at least 5 correct digits in the computed results. Empiric rule for the
truncation number that delivers D correct digits in the computed eigenvalue has been established
as N = κ + p/d + 10D.

The second configuration deals with “narrow” strips, d = 35 nm, p= 3 µm, h= 10 µm, µc = 0.75
eV, τ = 1 ps, and therefore two orders higher frequencies. The main difference, however, is much
smaller fill factor d/p= 0.0117, that entails much lower thresholds of the lattice modes. Therefore,
the corresponding eigenvalues have been at first computed with N = 50 and then refined with
larger truncation numbers, up to N = 800 for the lattice modes.

3. Plasmon, slab and lattice mode frequencies, thresholds and fields, H-case

In Fig. 3(a),(b), we show the color maps of two determinants (19), for N = 50, as a function
of f = ω/2π and γ. Here, the grating period, strip width and substrate thickness are in the
micrometer range, p= 70 µm, d = 14 µm, h= 10 µm and α= 1.5. The minima on the maps host
the LEP eigenvalues of the x-even and x-odd modes, respectively.

On each map, there is a sequence of modes, which follow a hyperbola, f · γ = const . These
eigenvalues correspond to the plasmon modes of graphene strips. Indeed, following [32,33] and
considering graphene strip as a 1-D graphene plasmon surface-wave Fabry-Perot resonator, we
obtain their frequencies and associated threshold gain index values as

f P
m ≈

1
2π

[︃
π(m − 0.25)cΩ

(α2 + 1)d

]︃ 1/2
, γP

m ≈
1

2ατ

[︄
(α2 + 1)3d
π(m − 0.25)cΩ

]︄1/2

(21)

where m= 1,2, . . . is the mode index and Ω is given in (3).
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Fig. 3. The color maps of the LEP determinants (absolute value) for the x-even (a) and x-odd
(b) modes of the laser configuration from Fig. 1. The matrix truncation number is N = 50.
Graphene parameters are T = 300 K, τ = 1 ps, and µc= 0.39 eV. The grating parameters are
as indicated.
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Note that (21) are derived neglecting the mode radiation losses and the interband contribution
(4) to the graphene conductivity. Therefore, these expressions are not accurate at the very low
frequencies, where the radiation losses prevail, and very high frequencies (in the visible [32]),
where the interband conductivity cannot be neglected. However, between 0.1 and 100 THz they
agree with full-wave numerical results [32] and with measurements [23]. The plasmons of the
odd indices belong to the class of x-even modes, and those of the even indices – to the class of
x-odd modes, each class appearing only on one of the maps in Fig. 3.

As one can see from (21), the plasmon-mode frequencies grow and their thresholds drop as√︁
mcΩ/d ≈

√︁
mc µc/kBTd, so that indeed γP

m · f P
m ≈ (α2 + 1)(4πατ)−1. Expressions (21) help

estimate the tunability of the plasmon modes under the variation of the chemical potential. If
the potential varies from zero to 1 eV, the quantity Ω changes approximately tenfold – therefore,
both the frequency and the threshold gain change within the factor of 3.

Besides of the plasmon modes, one can see the high-threshold eigenvalues off this hyperbola –
they are the lowest slab modes, S0,1,2, slightly perturbed by the periodic strips. These modes have
very large radiation losses hence high thresholds.

Still besides, there are two low-threshold minima on each map, around 4.16 THz and 7.7 THz,
which correspond to the lattice modes of the whole grating as a periodic open cavity, L±

10 and L±
20,

respectively [1,2]. Their emission frequencies are defined primarily by the period of the grating,
i.e., are close to the RAs at f RA

m = mc/p, m= 1,2,. . . (see red arrows at the bottom edge of each
map). However, the red shift from RA is defined by the propagation constant of one of the guided
natural waves of the dielectric substrate as open waveguide that scales with substrate refractive
index α and thickness h – see [39] for details. Therefore, each lattice mode has two “parents.”
To reflect this circumstance, the first index of the lattice mode, here 1 or 2, corresponds to the
nearest RA, i.e., to the 1-st or the 2-nd one. The second index, here 0, corresponds to the index
of the principal guided natural wave TM0 of the dielectric slab, with zero cutoff frequency.

In systematic analysis, we have used the points from the map minima as initial-guess values.
As a search algorithm, we used the residual inverse iteration technique (RIIT), details of which
can be found in [40], although standard steepest-descent algorithms could be also used. The
advantage of RIIT is that it finds the eigenvector together the eigenvalue of the matrix that is
needed to build the mode field pattern. More accurate values of the mode emission frequencies
and threshold gain index values are presented in Table 1. The Q-factors of the same modes in the
passive cavity are estimated be the approximate formula, Q = α/γ + O(γ), derived in [16] (see
Eq. (21)), taking into account that the overlap coefficient here equals 1 as the whole volume of
the open cavity is the active region.

Table 1. Wide strip case: H-polarized mode LEP eigenpairs
and estimated Q-factors

p= 70 µm, h= 10 µm, d = 14 µm, α= 1.5, µc = 0.39 eV, τ = 1 ps

Mode Frequency, THz Threshold gain, γ Q-factor, estimation

P1 2.501655 0.152062 9.9

P2 3.881121 0.040944 36.6

L+10 4.165693 0.00424 353.7

L−
10 4.162835 0.003903 384.3

S0 2.153888 1.231526 1.1

S+1 5.176666 1.04789 1.4

S−1 5.158333 1.083 1.4

The near magnetic-field patterns shown in Fig. 4 and Fig. 5 have been computed for N = 50
and the same graphene and configuration parameters as in Fig. 3. The strip is shown as white
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box and the dielectric-air boundaries are shown as black dotted lines. The field patterns support
our identification of the plasmon, slab, and lattice modes.

Fig. 4. Magnetic field patterns on one period for the plasmon modes P1, P2, P3 and the
slab S0 mode, for the grating as in Fig. 3.

Note that the plasmon mode magnetic fields stick to the strips and form the bright spots
corresponding to the halfwaves of the graphene guided wave. The principal slab mode magnetic
field is close to zero at the middle section of the slab (where electric field has maximum – see
Fig. 12(a) in Section 5) and deviates from the bare slab mode only in the vicinity of the strips. In
contrast, the lattice mode fields form very bright spots that fill the whole slab and stretch out of it,
the distance of stretching correlating with the value of the gain threshold index, γ - the smaller
the threshold, the further the stretching.

Obviously, a full-wave parametric analysis of the mode emission frequencies and threshold
values of the gain index, for all types of modes, is of great importance. First of all, it is interesting
to study the role of the chemical potential, µc. The Fredholm theorems guarantee that each LEP
eigenvalue is at least a piece-continuous function of the chemical potential, and the continuity
can be spoiled only at the potentials (if they exist) where two eigenvalues coalesce.

However, we have found that the dynamics of the LEP eigenvalues is very complicated. The
reason is quite strong dependence of the plasmon-mode frequency and threshold gain on the
chemical potential – see (21). As already mentioned, if the potential varies from 0 to 1 eV
(this is the largest value accessible today with the best CVD graphene), then the plasmon-mode
frequency triples. Indeed, numerical study shows that each plasmon-mode frequency, at some
µc, approaches the frequency of a nearest lattice mode, always lying at the red side of Rayleigh
Anomaly, where strong hybridization of the mentioned modes occurs. As an example, in Fig. 6
we present such dependences for the configuration with “wide” strips where all computations can
be done with relatively small truncation number, N = 50.
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Fig. 5. Magnetic field patterns on one period for the lattice modes L±H
10 and L±H

20 for the
grating as in Fig. 3.

As visible, within each symmetry class of modes, if µc gets higher, then the plasmon modes
show the frequency growth in line with (21) until entering the hybridization regime with a nearest
lattice mode, accompanied by the “avoided crossing” of the frequency plots, and the crossing of
the threshold gain plots; as known, the mode fields in this regime are the sum and the difference
of the partial fields involved, so that the modes “exchange” their field patterns. Therefore, even a
consistent notation of any mode becomes a challenge.

Note that, to avoid iterative code jumping from one eigenvalue to another, in the hybridization
area the step in parameter (here, potential) variation should be taken appropriately small. We
leave, however, a fuller discussion of the mode hybridization details to another publication.

In Fig. 7, we present the color maps of two determinants (absolute value) for the laser with
much smaller unit-cell and strip dimensions, p= 3 µm, d = 35 nm, h= 1 µm, however, larger
refractive index, α = 1.949. The studied frequency band is from 60 THz to 250 THz, i.e., in the
infrared range, where the wavelength varies from 5 µm to 1.2 µm.

Note that here the determinant absolute values vary at ultra-small level, from 10−33 to 10−40

and it is quite difficult to see the minima, which correspond to the eigenvalues. To overcome this
difficulty, we started looking for the eigenvalues as the zeros of the other, real-valued quantity
– matrix inverse condition number. As known, the condition number is defined as product of
the matrix norm and the corresponding inverse matrix norm. As a function of the frequency
and threshold index, this quantity varies in much more moderate manner, see the color maps in
Fig. 8. At the bottom edge, the red arrows mark the positions of the RAs, which are the branch
points, and the black arrows mark the cut-off frequencies of the higher-order guided waves of the
substrate.

On these maps, one can see the narrow valleys, which hide the LEP eigenvalues of the high-
threshold slab modes, moderate-threshold plasmon modes, and ultralow-threshold lattice modes.
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Fig. 6. Dependences of the mode emission frequencies (a), (c) and threshold gain indices
(b), (d) of the plasmon and the lattice modes of the grating of Fig. 3 on the graphene chemical
potential.

Fig. 7. Color maps of the LEP determinants (absolute value) for the x-even (a) and x-odd
(b) modes of the laser from Fig. 1. The matrix truncation number is N = 50. Graphene
parameters are T = 300 K, τ = 1 ps, and µc = 0.75 eV. The grating parameters are as indicated.
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Fig. 8. Color maps of the LEP inverse condition number for the x-even (a) and x-odd (b)
modes of the same laser configuration as in Fig. 7. The matrix truncation number is N = 50.

Using the maps, we have found these eigenvalues by the iterative RIIT code and then refined with
larger N up to 800; they are presented in Table 2, where symbol (♣) marks still-to-be-refined
data.

Table 2. Narrow strip case: H-polarized mode LEP eigenpairs and
estimated Q-factors

p= 3 µm, h= 1 µm, d = 35 nm, α= 1.949, µc = 0.75 eV, τ = 1 ps

Mode Frequency, THz Threshold gain, γ Q-factor, estimated

P+1 57.9249701561 0.0042844102 454.9

P−
2 88.2878800345 0.002508104 777.1

L+10 76.2285323835 3.2231874256*10−6 6.05*105

L−
10 76.2174034174 1.3177899938*10−9 1.48*109

L+20 122.2904222966 2.3425456094*10−7 8.32*106

L−
20 122.287012 5.693*10−10 (♣) 3.4*109

L+30 169.032243 3.46183*10−8 (♣) 5.6*107

L−
30 169.031012 5.262*10−17 (♣) 3.7*1016

S0 13.12724260690147 1.86211145744384 1.1

They demonstrate that the x-odd lattice modes have the thresholds several orders lower than
their sister modes of the x-even class. Some of the modes have extremely low thresholds – for
instance, for the L+30 mode it has the order of 10−8, and for the mode L−

30 it is at the level of
machine precision, 10−17.

In Fig. 9, we show the magnetic field of the first plasmon mode, P1, and the principal slab
mode, S0, in the near zone. The strip is shown as white box and the dielectric-air boundaries
are shown as black dotted lines. The plasmon mode displays the field, which is tightly bind
to the strip, with the number of bright spots corresponding to the mode index. The slab mode
displays the magnetic field, which is almost zero at the substrate middle section, similar to the
slab without strip where it is exactly zero. Narrow nanostrips (d/p= 0.0117) perturb this pattern,
however, very gently.

In Fig. 10, we show the field patterns of the first three lattice modes, of each of two parity
classes, created by the 1-st, 2-nd and 3-rd RAs and the principal guided wave of the substrate,
TM0. As visible, the lattice mode fields are confined inside the slab substrate much better than
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Fig. 9. Magnetic field patterns on one period for the x-even plasmon mode P1 (a) and the
slab mode S0 (b) for the same grating as in Figs. 7 and 8.

Fig. 10. Magnetic field patterns on one period for the x-even (left column) and x-odd (right
column) lattice modes L±H

10 , L±H
20 and L±H

30 for the same grating as in Figs. 7–9.
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in the case, presented in Fig. 5. This correlates with the several orders lower values of their
threshold gain index, which corresponds to smaller ohmic losses in smaller strips and, apparently,
smaller radiation losses. As could be expected, the lattice modes of the x-even and x-odd parity
classes demonstrate very close to each other emission frequencies, however, the x-odd modes
have the lowest values of the threshold gain. This is because here the lossy strips are located at
the nearly-zero magnetic field and hence support very weak currents.

The notations in the lattice mode identification, L±H
mM , are explained as follows. The field

patterns show integer number of bright spots on elementary period (2 m, along the x-axis) and a
single spot across the substrate (along the y-axis). The first index corresponds to the “parent” RA
(and hence the dominant Floquet harmonic number) and the second index corresponds to the
“parent” natural wave, TM0 (M = 0) guided by the substrate as an open waveguide.

4. Casting the eigenvalue problem to determinantal equations, E-case

In the E-polarization case, the 2-D LEP is formulated similar to the H-case, presented in Section
2. In this case, the basic field component is Ez(r⃗) = E(r⃗), r⃗ = (x, y) and the boundary conditions
at the strips are

E(1) − E(2) = 0, E(1) + E(2) = 2Z Z0[H(1)
x − H(2)

x ], (22)
On expanding E(x, y) in terms of the Floquet series (5)-(7), substituting them to the boundary

conditions, and doing some algebra (all details of which can be found in [39]), the problem is
reduced to the following DSE for the unknown coefficients, zn = δ0n + an,

∞∑︂
n=−∞

znΓ
E
n einφ =

⎧⎪⎪⎨⎪⎪⎩
0, θ< |ϕ|<π,

− κ
Z

∞∑︁
n=−∞

zneinφ , |ϕ|<θ,
(23)

where

Γ
E
n = gn − gsl

n
(gsl

n − gn)eigsl
n ξ − (gsl

n + gn)e−igsl
n ξ

(gsl
n − gn)eigsl

n ξ + (gsl
n + gn)e−igsl

n ξ
, (24)

DSE (23) is drastically different from the H-case DSE (8). Its left-hand part can be inverted
analytically using the Inverse Discrete Fourier Transform (IDFT) and the orthogonality of the
exponents, thus yielding a matrix equation for zn. However, the rate of decay of the obtained
matrix elements with larger |m| and |n| is different. To balance it, we introduce new variables,
xn = znwn, wn = (|n| + 1)1/2. Finally, combining them as x±n=xn ± x−n, n = (0)1, 2, . . ., we split
the matrix equation into the x-even and x-odd case equations, and arrive at the following result:

x±m+
∞∑︂

n=0(1)
A±E

mnx±n = 0, m = 0(1), . . . , (25)

where
A±E

mn = κ ζnwm(Z wnΓ
E
m)

−1[Smn(θ) ± S−m,n(θ)], (26)
Smn = sin(n − m)θ/π(n − m), Smm = θ/π, (27)

ς0 = 1/2, ςn>0 = 1, and θ = πd/p. Verification of the large-index behavior of the matrix
elements A±E

mn shows that each of equations (25) is a Fredholm second kind matrix equation in
the space of sequences, l2. Therefore, the Fredholm theorems guarantee that the characteristic
numbers, found from the truncated determinantal equations for the x-even and x-odd modes,
respectively,

D
±

E(k, γ) = Det
∥︁∥︁∥︁δmn + κζnwm(ZwnΓ

E
m )

−1
(Smn ± S−m,n)

∥︁∥︁∥︁N

m,n=0(1)
= 0 (28)

converge to the exact values with larger truncation numbers N. These values, or LEP eigenpairs,
(k, γ), form a discrete set. They can be found by iterations using the minima on the determinant
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maps as initial-guess values. Alternatively, the LEP eigenvalues can be searched as zeros of the
inverse condition numbers of matrices (25).

5. Slab and lattice mode frequencies, thresholds and fields, E-case

In Fig. 11(a),(b), we show two color maps of inverse condition numbers, computed for the
E-polarization matrices (25) with N = 50, as a function of f = ω/2π and γ. Here, the grating
period is p= 3 µm, strip width is d = 35 nm, substrate thickness is h= 1 µm, α= 1.949, and the
graphene parameters are µc = 0.75 eV, τ = 1 ps, T = 300 K. The minima on the maps host the
LEP eigenvalues of the x-even and x-odd modes, respectively.

These minima are taken as initial-guess values in the iterative search using the RIIT algorithm,
as explained in Section 2. The computed values for the LEP eigenpairs, plus the estimations of
the corresponding Q-factors, are presented in Table 3.

Table 3. Narrow strip case: E-polarized mode LEP eigenpairs
and estimated Q-factors

p= 3 µm, h= 1 µm, d = 35 nm, α= 1.949, µc = 0.75 eV, τ = 1 ps

Mode Frequency, THz Threshold gain, γ Q-factor, estimated

L+10 64.317705 6.427*10−7 3.03*106

L−
10 64.311292 2.536*10−10 7.68*109

L+11 97.785096 5.541*10−7 3.51*106

L−
11 97.778700 6.656*10−14 2.92*1013

L+20 114.347958 7.819*10−8 2.49*107

L−
20 114.345774 1.185*10−10 1.64*1010

L+21 147.153849 1.329*10−7 1.46*107

L−
21 147.149350 1.865*10−10 1.05*1010

L+22 192.111694 9.368*10−8 2.08*107

L−
22 192.108106 1.557*10−10 1.25*1010

L+30 163.995534 2.205*10−8 8.84*107

L−
30 163.994646 6.819*10−11 2.86*1010

L+31 192.638927 4.157*10−8 4.69*107

L−
31 192.636787 1.523*10−10 1.28*1010

S0 13.155914 1.857 1.0497

S+1 85.41519 0.569 3.4259

S+2 159.29152 0.324 6.0165

S+3 239.513 0.198 9.8452

One can see several high-threshold eigenvalues – these are the lowest slab modes, S±
0,1,2 , which

have very large radiation losses. In the E-polarization, there are no plasmon modes. However,
there are ultralow-threshold minima on each map, which correspond to the lattice modes of the
whole grating as a periodic open cavity, belonging to the x-even and x-odd classes.

In Fig. 12, we present the electric-field patterns of two lowest slab modes, slightly perturbed
by the strips. Figures 13–15 correspond to the lattice modes computed with N = 50 for the same
graphene and configuration parameters as in Fig. 11.

The patterns show integer number of bright field spots on elementary period (2 m, along the
x-axis) and across the substrate (M, along the y-axis). The first index corresponds to the “parent”
RA (and hence the dominant Floquet harmonic number) and the second index corresponds to the
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Fig. 11. The color maps of the inverse condition number for the x-even (a) and x-odd (b)
E-polarized modes of the laser in Fig. 1, computed with N = 50. Graphene and grating
parameters are T = 300 K, τ = 1 ps, µc = 0.75 eV, p= 3 µm, d = 35 nm, h= 1 µm, α= 1.949.
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Fig. 12. Electric field patterns on one period of the x-even slab modes S0 (a) and S+1 (b).

“parent” natural wave, TEM , (M = 0,1,2, . . . ) guided by the substrate as an open waveguide. This
explains our notations in the lattice mode identification, L±E

mM .
In Fig. 13, presented are the electric field patterns of the lattice modes, created by the principal

guided wave of the substrate, TE0 (M = 0) and the first higher-order wave, TE1 (M = 1), near
the 1-st RA. The higher-order wave of the substrate is responsible for the zero field near the
median section of the substrate. Note that the x-even and x-odd modes of each type have very

Fig. 13. Electric field patterns on one period of the x-even (left column) and x-odd (right
column) lattice modes, L±E

10 (top row) andL±E
11 (bottom row).
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similar fields, differing by the shift along the x-axis by the quarter of period. Their frequencies
of emission are also very close to each other – for the L±E

10 modes they are 64.317705 THz
and 64.311292 THz, and for the L±E

11 modes, they are 97.785096 THz and 97.778700 THz,
respectively. However, the threshold gain values are drastically different, for the L±E

10 modes
they are 10−7 and 10−10, and for the L±E

11 modes, they are 10−7 and 10−14, respectively. This is
because for the x-even modes the lossy strips are in the E-field maxima, while for the x-odd they
are in the minima.

In Fig. 14, we show the near field patters for the lattice modes, created by the 2-nd RA and
three guided waves of the substrate, TEM with M = 0, 1 and 2, i.e., L±E

20 , L±E
21 and L±E

22 .

Fig. 14. Electric-field patterns on one period for the x-even (left column) and x-odd (right
column) lattice modes,. L±E

20 , L±E
21 and L±E

22 .
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They show the same regularities: the fields (besides of the p/8 shift) and the frequencies of the
sister modes of each even-odd doublet are very close to each other, while the gain thresholds are
drastically different – 10−8 and 10−11, respectively.

Finally, in Fig. 15 we present the near-field patterns for the even-odd doublets of the lattice
modes, created by the 3-rd RA and two guided waves of the substrate, TEM with M = 0 and M = 1,
i.e., L±E

30 and L±E
31 . They display the same regularities as explained above.

Fig. 15. Electric-field patterns on one period for the x-even (left column) and x-odd (right
column) lattice modes L±E

30 (upper row) and L±E
31 (lower row).

6. Conclusions

We have considered two mathematical models for the H-and E-polarized natural modes of the
laser built on infinite grating of graphene strips on the active (i.e., made of the gain material)
substrate, at the threshold of stationary light emission. These models lie entirely in the framework
of the classical electromagnetics, however, use a quantum-theory description of the graphene
electron conductivity. The corresponding LEPs for the modes of either polarization have been
reduced to the determinantal equations for two mode classes of orthogonal parity. Our treatment
is based on the analytical inversion of the static part of the problem associated with the grating in
free space, with the aid of the RHP technique in H-case and IFDT in E-case. As a result, the
matrices, which generate the determinantal equations, are of the Fredholm second kind.

This provides a mathematical proof of the convergence of the characteristic numbers of the
truncated determinantal equations to the sought-for LEP eigenvalue pairs, if the matrix truncation
order gets larger. Additional and remarkable merit is that the matrix elements depend only on
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elementary functions, computable very quickly with superior accuracy. Using the developed
algorithms, we have computed the LEP eigenpairs, associated with various H-and E-polarized
modes of two laser configurations shaped as graphene-strip grating on the gain substrate, with
microsize and nanosize strips, respectively, and discussed their characteristics.

First of all, we have studied the plasmon modes, which exist only in the H-polarization case
and found that they are tunable with the aid of the chemical potential of graphene within the
factor of 3. This tunability concerns both the frequencies and the threshold gain values. In the
main terms, the characteristics of the plasmon modes of the graphene strip grating laser are quite
similar to the plasmon modes of the other two configurations, which have been studied with the
LEP approach - single and double quantum wires, fully covered with graphene [31,32] and such
a wire loaded with a flat graphene strip [33].

However, in the either polarization, the lowest emission thresholds are found for the lattice
modes of two possible symmetry classes. These thresholds can be at the level of the machine
precision, 10−17, in terms of the gain index, for quite realistic strip, period and substrate parameters
– say, 30-nm wide strips of graphene can be found in the sensor reported in [23]. Still, the lattice
modes are by no means the so-called “bounded states in continuum” (BICs), which are prohibited
by the Optical Theorem.

The above presented results of the LEP analysis, together with the accurate study of the
plane-wave scattering from the graphene strip grating on passive dielectric substrate (see [35,39]),
convincingly prove that the lattice modes (i) do not have “plasmonic” nature (as frequently
believed); instead, they are caused by the periodicity, and (ii) are mediated by the guided waves
of the finite dielectric substrate or, in broader sense, the guided waves of the host medium. The
periodicity yields the main term in the lattice-mode frequency – this corresponds to the RA
frequency. The guided wave yields the main term in the redshift from the RA frequency [39]. In
the wave scattering scenario, each lattice mode corresponds to a complex-valued pole of the field
as a function of the frequency, with ultra-small imaginary part (i.e., ultrahigh Q-factor). In the
lasing condition scenario, each lattice mode has ultralow threshold value of the material gain in
the active region.

To the question of possible deviations caused by the finite dimensions of the real-life gratings, a
partial answer can be found in the analysis of the plane-wave scattering from finite graphene-strip
gratings, suspended in the free space [41]. As visible from plots in Fig. 11 there, the gratings
of 50 or more strips, each 20-µm wide and placed with 70-µm period, demonstrate the same
per-strip reflectance as infinite strip grating, in the whole THz range except narrow vicinities
of RAs. Therefore, today’s graphene-strip grating sensors, which contain many hundred and
even thousand strips, display the characteristics that should be even better reproduced by the
infinite-grating model. The same can be expected with respect to the mode threshold conditions
for the finite-grating laser configurations. Namely, the plasmon-mode and slab-mode thresholds
can be expected insensitive to the number of strips, however, the lattice modes should demonstrate
the thresholds, which strongly depend on this number until it reaches hundreds or thousands,
depending on the configuration.

The zero-thickness model of graphene monolayer is another source of possible deviations
from the real-life characteristics. Here, it can be noted that, in fact, the measurements show that
graphene usually has a 2-4 nm thickness [23] that points out to the presence of a stack of several
monolayers. It is commonly considered that as far as the number of monolayers is small, less
than 10, it should be added as a factor to the expressions of the complex conductivity known as
the Kubo formalism (3) in order to obtain the conductivity of the stack.

We have performed our analysis assuming that the gain index, γ, is uniform, i.e., not dependent
on the frequency, while in reality it is usually characterized by a lorentzian-like spectrum.
However, it is easy to see that if the gain is uniform within the interval from f 1 to f 2 and vanishes
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off that interval, then all modes that have their frequencies in this interval keep their thresholds
the same as above, while the thresholds of the other modes “fly off” to infinity.
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