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Abstract: This paper is aimed at devising a new optical theorem formulation for the 3-D
plane-wave scattering from an infinite resistive plane and, more generally, a thin dielectric
plate with a finite-size inhomogeneity shaped as a hollow or sealed hole. This formulation
is further modified to cover the case of the plane guided wave scattering from the same
inhomogeneity. For the lossless plane, the diffracted field combines a classical outgoing spherical
wave, satisfying the Silver-Muller radiation condition, with an outgoing cylindrical guided wave
supported by the plane; the power absorbed in the lossy filling is finite. When a lossy plane
is involved, a complication appears: the total absorbed power is infinite. However, a change
in the inhomogeneity characteristics perturbs the absorbed power density, thus suggesting the
perturbative absorption analysis. After developing the analytical procedure for the resistive
plane case and the corresponding generalization to the thin dielectric plate case, we illustrate the
significance of the new optical theorem by the numerical analysis of the visible-light scattering
from a dielectric plate with a circular nanosize hole sealed with a silver disk. Our analysis uses
the in-house code having mathematically guaranteed convergence; it reveals the scattering and
absorption resonances on the plasmon modes of the silver nanodisk. The derived optical theorem
allows us to see that, in the resonances, the power carried by the guided waves can be comparable
to the power scattered into the free space.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Optical Theorem (OT) has quite a long history [1] and features in many dozens of publications
across a variety of disciplines. Besides optics and photonics, where it appears in the wave
scattering theory, it is also useful in quantum particle scattering and astrophysics. In this work,
we deal with the OT of the classical time-harmonic electromagnetics; presented below is a
brief overview of the most typical scenarios. Those who are interested in the OT in quantum
mechanics, can be suggested review [1]. Various more recent theoretical-physics generalizations
of the OT have been also published in [2–7].

According to [1], OT has its roots in the 19-th century pioneering works of Sellmeier and Lord
Rayleigh, however, was explicitly derived by Mie in 1902 [8]. Still, it had apparently become
widely known only since the 1940s, when it was re-discovered by Van de Hulst [9] and, albeit for
a short time, bore his name. Originally, it related to the plane-wave scattering from a finite-size
object located in the infinite uniform host medium, usually the free space. It links together
the sum of the averaged over the period total power taken by the scattered field to infinity and
the power lost for absorption (together called the extinction power, or, in the normalized form,
extinction cross-section) with the scattered field amplitude in the forward direction. As known,
the far-field angular scattering pattern always has a distinctive lobe in the forward direction called
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the shadow lobe. Therefore, the larger or the more lossy the scatterer, the deeper and the longer
the shadow behind that scatterer.

Mathematically, derivation of the OT starts from the formulation of the boundary-value problem
(BVP) for the set of the time-harmonic Maxwell (in 3-D) or Helmholtz (in 2-D) differential
equations plus the boundary conditions at the scatterer surface(s) and the radiation condition at
infinity. The OT is obtained by applying the vector (in 3D) or scalar (in 2D) Green’s formula to
the total field function and its complex conjugate – this is also known as the Complex Poynting
Theorem (CPT) [10] – in a limited domain inside a spherical (or circular) layer, external with
respect to the scatterer. Then, it is necessary to (i) stretch the outer layer boundary to infinity
and use the radiation condition for the field function and (ii) shrink the inner layer boundary to
the origin of coordinates and use the boundary conditions. Finally, extraction of the real part of
the obtained complex-valued expression yields the sought OT. Therefore, the OT appears as the
real part of the CPT and, hence, has the meaning of the power conservation law. It should be
noted that it is the presence of the plane-wave term in the total field that is responsible for the
appearance, in the OT, of the scattered field amplitude in the forward or shadow direction [11,12].

Thus, the OT is a necessary although not a sufficient condition: every field function, which
satisfies the BVP for the Maxwell equations, is destined to satisfy the OT. It has interesting
consequences if combined with the Reciprocity Theorem that links together the field generated at
the point A by the elementary dipole located at the point B with the reciprocal quantities if A and
B are interchanged. If adapted to the plane-wave scattering, this consequence means that the
shadow lobe amplitude is invariant with respect to the sign of the incident plane wave propagation
direction (although the shape of the whole far-field angular pattern can be drastically different),
i.e., the shadow is the same for two opposite illumination directions. Therefore, the extinction
power is also invariant of the mentioned direction sign, although the relative contribution of the
scattering and the absorption can be different.

If there is no incident plane wave, then the wave-scattering BVP turns into the eigenvalue BVP
where the natural-mode frequency must be assumed complex (the real values are not allowed). In
such a case, the OT can be applied to the natural-mode field function and its complex conjugate.
The resulting expression links the mode Q-factor, defined as the real to twice the imaginary part
ratio of the complex eigenfrequency, with the ratio of the power stored in the object as an open
resonator to the sum of the powers lost for the radiation and the absorption [13].

The OT has many incarnations depending on the type of the host medium.
If the host medium is not the free space but the space inside a hollow PEC waveguide, then

the incident wave cannot be a plane wave – instead, it is one of the natural guided waves of the
waveguide. Besides, there is no scattering into the infinite host medium. Assuming that the
incident wave carries a unitary power and is defined only in one arm of the waveguide, the OT is
relatively easily reduced to R + T + A = 1, where R, T and A are the reflectance, transmittance
and absorbance, i.e., the corresponding power fractions. In the general case, R and T involve
summations over all the natural guided waves that are above cutoff.

If the infinite host medium contains an infinite open waveguide, e.g., it is a lossless layered
dielectric medium, then the OT has to contain the terms of both free-space and waveguide nature.
For the 2-D case, this derivation was performed in [14] where it was noted that, in that case, the
incident field could be not only a plane wave but also a guided wave of the open waveguide. The
latter case was in the focus of [15], both in 3-D and 2-D, where the derivation of the OT was
linked to the modified radiation condition at infinity, adapted to the existence of the guided natural
waves of the open waveguide. Here, the OT has the following normalized form: R+T +A+S = 1,
where S is the power scattered to the host medium apart from the powers R and T brought to
infinity in the backward and forward arms of the open waveguide.

Special case is the plane-wave scattering from infinite periodic scatterers, i.e., the lossless and
lossy gratings. Unlike what happens for a finite-size object, here the total powers associated with
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the reflection, transmission and, in the lossy case, absorption are infinite. However, this problem
is simply overcome by considering these quantities per single period. Then, the OT takes the
same form, R + T + A = 1, as in the hollow-waveguide case [16]. This is not surprising as in
such scattering problems the additional condition of the quasi-periodicity of the scattered field is
present. Thanks to that condition, the whole problem is reduced to a BVP on a single period or,
equivalently, in the so-called “Floquet waveguide.” However, such an approach cannot be applied
when non-periodic infinite structures are involved.

As we have found, an interesting, however, not yet studied case is the plane-wave scattering from
an infinite non-periodic lossless or lossy plate-like structure with a 3-D finite-size inhomogeneity.

In a recent paper by the authors [17], dealing with the plane-wave scattering from a resistive
plane with a circular hole, it has been demonstrated that, even if an infinite power is absorbed
by an infinite holed resistive plane, a change in the size of the circular hole perturbs the density
power absorbed, thus suggesting an absorption analysis of the perturbative type. This line of
reasoning has been addressed in [18], where, for the same structure, the OT has been formulated
by introducing a new easily evaluable parameter for the analysis of the absorption, with a clear
physical meaning inferred by the conservation of power principle.

This paper is aimed at presenting the analytical procedure to devise an OT formulation valid
for the 3-D scattering from lossless or lossy zero-thickness penetrable resistive plane and thin
dielectric plate with finite-size inhomogeneities. Here, we use the term “thin” keeping in mind the
model of thinner-than-wavelength dielectric plate, where the thickness shrinks to zero, however,
enters the coefficients of the generalized boundary conditions (GBC) [19]. For the sake of
simplicity of notation, in Section 2, the OT will be firstly devised for the resistive-plane case,
making the generalization to the dielectric plate case, in Section 5, straightforward. Section 3
deals with the derivation of the radiation condition for the diffracted field in the problem at hand,
whereas in Section 4, the new OT is formulated. Section 6 shows the numerical results obtained
by the analysis, in the optical range, of the plane-wave scattering from a thin dielectric plate with
a circular hole sealed with a silver disk. The conclusions are summarized in Section 7. In the
paper, we imply the time dependence ejωt, where ω is the angular frequency.

2. Formulation of the problem

A resistive plane of resistivity R in the free space with a finite-size planar inhomogeneity of
resistivity R′ is considered (see Fig. 1). A Cartesian coordinate system, (x, y, z), with the z
axis orthogonal to the resistive plane and the origin, O, located in the inhomogeneity, and the
corresponding cylindrical coordinate system, (ρ, ϕ, z), and spherical coordinate system, (r, θ, ϕ),
are introduced.

𝑅
Fig. 1. Geometry of the problem, incident plane wave, and adopted notations.

An incident field, (Einc(r), Hinc(r)), where r identifies the position of the observation point,
impinging onto the structure generates a scattered field. The total field, (E(r), H(r)), given by
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the sum of the incident and scattered fields, can be presented as follows:

(E(r), H(r)) = (E0(r) + Ediffr(r), H0(r) + Hdiffr(r)), (1)

where (E0(r), H0(r)) is the total field of the “background” problem, i.e., the problem involving
the homogeneous resistive plane of resistivity R in the free space, and (Ediffr(r), Hdiffr(r)) is the
diffracted field appearing due to the inhomogeneity. The field of the background problem can be
obtained by the separation of variables method and, hence, it is assumed to be known in closed
form.

To find the diffracted field, the following BVP appears. The total field must satisfy the
time-harmonic Maxwell equations at the points off the plane z = 0. At that plane, the two-side
resistive boundary conditions [19] are imposed,

Et(ρ, ϕ, 0) =
⎧⎪⎪⎨⎪⎪⎩

R J(ρ, ϕ) for (ρ, ϕ) ∈ S∞ − S′

R′J(ρ, ϕ) for (ρ, ϕ) ∈ S′
, (2a)

E0t(ρ, ϕ, 0) = RJ0(ρ, ϕ) for (ρ, ϕ) ∈ S∞, (2b)

where the subscript “t” is used to select the tangential to the plane component of the electric
field, S∞ and S′ denote the infinite homogeneous resistive plane and the inhomogeneity region,
respectively, and the effective electric surface current densities, J(ρ, ϕ) and J0(ρ, ϕ), are related
to the jumps of the tangential to the plane component of the magnetic field with and without the
inhomogeneity, respectively, i.e.,

J(ρ, ϕ) = ẑ × (H(ρ, ϕ, 0+) − H(ρ, ϕ, 0−)), (3a)

J0(ρ, ϕ) = ẑ × (H0(ρ, ϕ, 0+) − H0(ρ, ϕ, 0−)). (3b)

Additionally, the field must satisfy the local power boundedness condition, which defines the
“edge behavior” at the discontinuity, i.e., at the rim of the inhomogeneity region [20]. And,
for r → +∞, the diffracted field must satisfy a radiation condition that eliminates the influx of
power from the infinity. Under these conditions, the BVP, where the unknown function is the
diffracted field, is uniquely solvable. The radiation condition should be adapted to the “structure
of infinity,” i.e., account for the presence of the infinite resistive plane. As it will be shown in the
next Section, this leads to the asymptotic representation of the diffracted field, at infinity, as a
sum of a spherical wave propagating in the r̂ direction and, albeit only for a lossless resistive
plane, for which ℜ{R} = 0, a cylindrical guided wave propagating in the ρ̂ direction [15].

3. Radiation condition for the diffracted field

In the case of a locally perturbed resistive plane, the diffracted field can be always presented as a
convolution of the unknown current or its analogue with the Green’s function of the uniform
resistive plane in the free space. As the convolution is a linear operation, the far-field behavior of
the Green’s function and of the diffracted field is the same. Therefore, the radiation condition can
be established by analyzing the far-zone expression of the Green’s function. In the most general
form, this expression contains two terms, one bringing the power from infinity to the origin and
the other taking the power from the origin to infinity. For uniqueness, only one term of these two
must be retained; this must be only the latter term as it agrees with the Principle of Radiation: no
diffracted-field sources at infinity.

According to this line of reasoning, however, using the Fourier transform (this is also called
switching to the spectral domain), the diffracted electric and magnetic fields for the problem at
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hand can be expressed in closed form in the spectral domain as functions of the Fourier transform
of the effective electric surface current density on the inhomogeneity,

J̃(w,ψ) =
1

4π2

∫
S′

J(ρ, ϕ)ejwρ cos(ψ−φ)dS. (4)

Then, the corresponding spatial domain counterparts are retrieved by means of the inverse
Fourier transform,

Ediffr(r) =
∫ 2π

0

∫
C

Ẽdiffr
≷ (w,ψ)e−jk≷(w,ψ)·rwdwdψ, (5a)

Hdiffr(r) =
∫ 2π

0

∫
C

H̃diffr
≷ (w,ψ)e−jk≷(w,ψ)·rwdwdψ, (5b)

where the subscript “>” (“<”) denotes the half-space z>0 (z<0), C is a suitable integration path
in the complex plane w = wR + jwI that will be discussed later,

k≷(w,ψ) = wcψ x̂ + wsψ ŷ ∓ j
√︂

w2 − k2
0 ẑ (6)

is the complex wavevector,

Ẽdiffr
≷ (w,ψ) = G̃

≷
(w,ψ)J̃(w,ψ), (7a)

H̃diffr
≷ (w,ψ) =

1
k0ζ0

k≷(w,ψ) × Ẽdiffr
≷ (w,ψ), (7b)

are the electric and magnetic fields in the spectral domain, respectively, whereas

G̃
≷
(w,ψ) =

R′ − R(︂
−j

√︂
w2 − k2

0 +
2k0R
ζ0

)︂ (︂
−j

√︂
w2 − k2

0 +
k0ζ0
2R

)︂ Ḡ
≷
(w,ψ), (8a)

Ḡxx,≷(w,ψ) = −j
k0ζ0
2R

√︂
w2 − k2

0 + k2
0 − w2c2

ψ , (8b)

Ḡxy,≷(w,ψ) = Ḡyx,≷(w,ψ) = −w2sψcψ , (8c)

Ḡyy,≷(w,ψ) = −j
k0ζ0
2R

√︂
w2 − k2

0 + k2
0 − w2s2

ψ , (8d)

Ḡzx,≷(w,ψ, z) = ∓wcψ
(︃
−j

√︂
w2 − k2

0 +
k0ζ0
2R

)︃
, (8e)

Ḡzy,≷(w,ψ, z) = ∓wsψ
(︃
−j

√︂
w2 − k2

0 +
k0ζ0
2R

)︃
, (8f)

is part of the 3-D spectral-domain dyadic Green’s tensor of the host medium (i.e., the background
environment), the components of which are derived using the separation of variables.

Other notations are: st = sin t, ct = cos t, k0 = ω
√
ε0µ0 = 2π/λ is the free space wavenumber,

λ is the free space wavelength, ε0 and µ0 denote the dielectric permittivity and the magnetic
permeability of the free space, respectively, ζ0 =

√︁
µ0/ε0 is the free space intrinsic impedance,

and
√︂

w2 − k2
0 = j

√︂
k2

0 − w2, i.e., the primary sheet of the two-sheeted Riemann surface created
by the square-root branch points ±k0 is chosen.
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Looking at Eqs. from (5) to (8), it is simple to conclude that the integrands in Eq. (5) have two
pairs of opposite-sign poles:

w±
C= ± k0

√︄
1 −

(︃
2R
ζ0

)︃2
, (9a)

w±
D= ± k0

√︄
1 −

(︃
ζ0
2R

)︃2
. (9b)

It is worth noting that w±
C and w±

D are proper poles for ℑ{R}>0 and ℑ{R}<0, respectively,
where ℑ{·} selects the coefficient of the imaginary part of a complex number. Henceforth the
symbol w±

P will denote two opposite-sign proper poles, meaning that P = C for ℑ{R}>0 and
P = D for ℑ{R}<0. Moreover, assuming ℜ{w+P}>0, where ℜ{·} selects the real part of a
complex number, it must be ℑ{w+P}<0 for ℜ{R}>0, whereas, for ℜ{R} = 0, the poles migrate
to the real axis and w+P>k0. As a result, for ℜ{R}>0, the integration path C detours only around
the real-valued square-root branch point k0 according to the choice of the primary sheet of the
corresponding two-sheeted Riemann surface (see Fig. 2(a)), whereas, for ℜ{R} = 0, it has to be
additionally deformed in order to detour around the real-valued proper pole w+P too (see Fig. 2(b)).

By means of Cauchy’s integral theorem, Cauchy’s residue theorem and Jordan’s lemma, it is
possible to show that (see Appendix A)

Ediffr(r) =
∫

cφ−ψ ≥0

[︃∫ k0

0

(︂
Ẽdiffr
≷ (wR,ψ) e−jk≷(wR,ψ)·r

− Ẽdiffr
−,≷ (wR,ψ) e−jk

−,≷(wR,ψ)·r
)︂

wRdwR

−

∫ +∞

0

(︂
Ẽdiffr
≷ (−jwI ,ψ) e−jk≷(−jwI ,ψ)·r + Ẽdiffr

−,≷ (−jwI ,ψ) e−jk
−,≷(−jwI ,ψ)·r

)︂
wIdwI

−2πjẼdiffr
P,≷(ψ)e

−jk≷(w
+
P ,ψ)·rw+P

]︂
dψ,

(10)
where the subscript “−” denotes the choice of the secondary sheet of the two-sheeted Riemann
surface created by the square-root branch points, i.e.,

√︂
w2 − k2

0 = −j
√︂

k2
0 − w2, and

Ẽdiffr
P,≷ (ψ) = lim

w→w+P

(︁
w − w+P

)︁
Ẽdiffr
≷ (w,ψ). (11)

𝐶 ℜ{𝑅} > 0
Fig. 2. Inverse Fourier transform integration path C for (a) ℜ{R}>0 and (b) ℜ{R} = 0.
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By means of the stationary phase method, the following asymptotic behavior can be established
for the electric field (see Appendix A):

Ediffr(r)
r→+∞
∼ e−jk0r

r
F(θ, ϕ)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Ediffr
sph (r)

−2πjej π4

⌜⃓⃓⎷
2
(︂
w+2

P − k2
0

)︂
πw+Pρ

e−jk≷(w
+
P ,φ)·rFP,≷(ϕ)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Ediffr
cyl (r)

, (12)

where

F(θ, ϕ) = 2jπk0 (R′ − R)

(︄
cθ J̃ρ (k0sθ , ϕ)
|cθ | + 2R

ζ0

θ̂ +
J̃φ (k0sθ , ϕ)

1
|cθ | +

2R
ζ0

ϕ̂

)︄
, (13a)

FC,≷(ϕ) = −jπk0 (R′ − R) J̃ρ
(︁
w+C, ϕ

)︁ (︃
2R
ζ0
ρ̂ ±

w+C
k0

ẑ
)︃

, (13b)

FD,≷(ϕ) =
jπk0ζ0 (R′ − R)

2R
J̃φ

(︁
w+D, ϕ

)︁
ϕ̂. (13c)

Further, remembering Eq. (5b) and using Eq. (7b), the asymptotic behavior of the magnetic
field can be readily obtained:

Hdiffr(r) r→+∞
∼ Hdiffr

sph (r) + Hdiffr
cyl (r), (14a)

Hdiffr
sph (r) =

1
ζ0

r̂ × Ediffr
sph (r), (14b)

Hdiffr
cyl (r) =

1
k0ζ0

k≷
(︁
w+P, ϕ

)︁
× Ediffr

cyl (r). (14c)

Here, the first field, (Ediffr
sph (r), H

diffr
sph (r)), is an outgoing electromagnetic spherical wave that

satisfies Silver-Muller radiation condition (i.e., TEM wave with respect to r̂), whereas the second
field, (Ediffr

cyl (r), H
diffr
cyl (r)), yields one of two outgoing TM and TE polarized with respect to ρ̂

and ẑ cylindrical guided waves for P = C and P = D, respectively. Such guided waves decay
exponentially away from the resistive plane (along the z axis) and algebraically, as O(ρ−1/2),
along the ρ̂ direction. As explained at the end of the previous Section, the asymptotic expressions
in Eqs. (12) and (14) can be considered as the analytic form of the radiation condition at infinity,
valid for the lossless resistive plane, ℜ{R} = 0, i.e., adapted to the existence of a natural wave
guided by such a plane. It should be noted that, if the resistive plane is lossy, i.e., ℜ{R}>0, then
the algebraic decay along the ρ̂ direction changes to the exponential one. In that case, the second
term in Eq. (12) can be safely neglected at infinity, and the radiation condition is reduced to the
Silver-Muller condition.

The obtained radiation condition enables us to derive the OT expression, adapted to the
presence of the considered infinite resistive plane.

4. Optical theorem

As mentioned in the Introduction section, the tool for devising the OT is the CPT, which is
applied to the sphere centered at O, of (finite) radius r̄ and volume V̄ delimited by the surface S̄,
containing the inhomogeneity (see Fig. 3). The intersection between the sphere and the plane
identifies a zero-thickness disk of radius r̄ and surface S. According to the CPT, the real power
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flowing through the surface S̄ and the power loss in the volume V̄ are related to each other in
both the scenarios, with and without the inhomogeneity, by the following relations, respectively:

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

E(r) × H∗(r) · r̂dS
⎫⎪⎪⎬⎪⎪⎭ +

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∫
S

Et(ρ, ϕ, 0) · J∗(ρ, ϕ)dS
⎫⎪⎪⎬⎪⎪⎭ = 0, (15a)

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

E0(r) × H∗
0(r) · r̂dS

⎫⎪⎪⎬⎪⎪⎭ +
1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∫
S

E0t(ρ, ϕ, 0) · J∗0(ρ, ϕ)dS
⎫⎪⎪⎬⎪⎪⎭ = 0, (15b)

where the star denotes the complex conjugate of a complex number.

Fig. 3. Geometrical sphere intersecting the scatterer.

By invoking the two-side resistive boundary conditions in Eq. (2), Eqs. (15) can be immediately
rewritten as follows:

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

E(r) × H∗(r) · r̂dS
⎫⎪⎪⎬⎪⎪⎭+

1
2
ℜ{R}

∫
S−S′

|J(ρ, ϕ)|2dS+
1
2
ℜ{R′}

∫
S′

|J(ρ, ϕ)|2dS = 0, (16a)

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

E0(r) × H∗
0(r) · r̂dS

⎫⎪⎪⎬⎪⎪⎭ +
1
2
ℜ{R}

∫
S

|J0(ρ, ϕ)|
2dS = 0. (16b)

Since the OT is expected to involve the far-field behavior, the limit for r̄ → +∞ of Eqs. (16)
has to be performed. However, if ℜ{R}>0, i.e., the resistive plane is made of lossy material,
the power loss can increase by enlarging the volume V̄ , and diverge when r̄ → +∞ because,
independently of the inhomogeneity (that has a finite extent), the surface currents can be
asymptotically non-vanishing (as happens, for example, when the incident field is a plane wave).
Considering that Eqs. (16) are independent of the sphere radius, it is simple to conclude that
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the limit for r̄ → +∞ of Eqs. (16) can lead to indeterminate forms, i.e., they cannot exist when
infinite volumes are involved.

On the other hand, for ℜ{R}>0, remembering Eqs. (1), (3), (12), and (14), it can be observed
that

ρ(J(ρ, ϕ) − J0(ρ, ϕ))
ρ→+∞
∼ e−jk0ρ

(︂
Fθ

(︂ π
2
−

, ϕ
)︂
− Fθ

(︂ π
2
+

, ϕ
)︂)︂
= 0. (17)

As a result, by invoking the triangle inequality, it is simple to state that

| |J(ρ, ϕ)|2 − |J0(ρ, ϕ)|
2 | ≤ |J(ρ, ϕ) − J0(ρ, ϕ)|(|J(ρ, ϕ)| + |J0(ρ, ϕ)|)

ρ→+∞
∼ o(1/ρ). (18)

To conclude, the divergence in the power loss can be suppressed and, hence, the indeterminate
forms avoided by taking the difference between Eqs. (16a) and (16b) before considering r̄ → +∞,
i.e.,

1
2
ℜ

{︃∮
S

(︁
E0(r) ×Hdiffr∗(r) + Ediffr(r) × H∗

0(r)
)︂
· r̂dS

}︂
+

1
2
ℜ

{︃∮
S̄

Ediffr(r) × Hdiffr∗(r) · r̂dS
}︃

+
1
2
ℜ{R}

∫
S−S,

(︂
|J(ρ, ϕ)|2 −

|︁|︁J0(ρ, ϕ)
|︁|︁2)︂ dS +

1
2
ℜ{R′}

∫
S′
|J(ρ, ϕ)|2dS

−
1
2
ℜ{R}

∫
S′

|︁|︁J0(ρ, ϕ)
|︁|︁2 dS = 0,

(19)
where Eq. (1) has been used. As can be simply verified, Eq. (19) is very general including the
ℜ{R} = 0 case as a special case.

The second integral at the left-hand side of Eq. (19) can be simplified by invoking the radiation
condition of the diffracted field. As stated above, when r̄ → +∞, only the spherical wave
contributes to the field representation for ℜ{R}>0. Conversely, for ℜ{R} = 0, in addition to the
spherical wave, the cylindrical wave has to be considered as well. In the latter case, it is simple
to show that spherical and cylindrical waves are asymptotically orthogonal in power. Indeed,
starting from Eqs. (12) and (14), it is possible to write

1
2

∮
S̄

Ediffr
sph,cyl(r) × Hdiffr∗

cyl,sph(r) · r̂dS

=

π∫
0

2π∫
0

√︁
r̄sθe

−r̄
[︂
|cθ |

√︂
w+2

P −k2
0±j(k0−sθw+P)

]︂
g±P(θ, ϕ)dθdϕ,

(20)

where g±P(θ, ϕ) are well-behaved functions. Hence, when r̄ → +∞, the integrands decay
exponentially for θ ≠ π/2 and they vanish for θ = π/2, i.e., the corresponding integrals
asymptotically vanish.

As a result, by means of simple algebraic manipulations, it is possible to conclude that the
second integral at the left-hand side of Eq. (19) can be asymptotically written as follows:

1
2

∮
S̄

Ediffr(r) × Hdiffr∗(r) · r̂dS r̄→+∞
∼

1
2

∮
S̄

Ediffr
sph (r) × Hdiffr∗

sph (r) · r̂dS

+
1
2

∮
S̄

Ediffr
cyl (r) × Hdiffr∗

cyl (r) · r̂dS ∼
1

2ζ0

∫ π

0

∫ 2π

0
|F(θ, ϕ)|2sθdθdϕ

+ δℜ{R},0
4πζ0
|R|

∫ 2π

0

|︁|︁FP,p,≷(ϕ)
|︁|︁2 dϕ,

(21)

where δν,µ is the Kronecker delta function, and p = ρ, ϕ for P = C, D, respectively.
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A suitable choice of the incident field allows us to express the first integral at the left-hand side
of Eq. (19) in closed form for r̄ → +∞ by means of the generalization of the procedure proposed
by Jones in [21].

If the incident field is a plane wave defined only in the upper half-space (z>0), i.e.,

Einc(r) = Ēince−jk0(θi,φi)·r, (22a)

Hinc(r) =
1
ζ0

k̂0(θi, ϕi) × Einc(r), (22b)

k0(θ, ϕ) = k0k̂0(θi, ϕi) = −k0(sθcφ x̂ + sθsφ ŷ + cθ ẑ), (22c)

where θ = θi<π/2 and ϕ = ϕi identify the incidence direction, then, the plane wave reflected by
the homogeneous resistive plane of resistivity R in the upper half-space (z>0) is

Erefl(r) = Ērefle+jk0(θi,φi±π)·r, (23a)

Hrefl(r) =
1
ζ0

k̂0(θi, ϕi ± π) × Erefl(r), (23b)

and the plane wave transmitted by the same plane in the lower half-space (z<0) is

Etr(r) = Ētre−jk0(π−θi,φi±π)·r, (24a)

Htr(r) =
1
ζ0

k̂0(π − θi, ϕi ± π) × Etr(r), (24b)

such that the two-side boundary conditions on the homogeneous resistive plane, i.e., for
(ρ, ϕ) ∈ S∞, are satisfied,

Einc
t (ρ, ϕ, 0) + Erefl

t (ρ, ϕ, 0) = Etr
t (ρ, ϕ, 0)

= Rẑ × (Hinc(ρ, ϕ, 0) + Hrefl(ρ, ϕ, 0) − Htr(ρ, ϕ, 0)).
(25)

Therefore, the total field of the background problem can be written as follows:

(E0(r), H0(r)) =
⎧⎪⎪⎨⎪⎪⎩

(Einc(r) + Erefl(r), Hinc(r) + Hrefl(r)) z>0

(Etr(r), Htr(r)) z<0
. (26)

By means of the stationary phase method and using Eqs. (12), (14), and (26), it can be stated
the following asymptotic behavior (see Appendix B):

1
2

∮
S̄

(︂
E0(r) × Hdiffr∗(r) + Ediffr(r) × H∗

0(r)
)︂
· r̂dS

r̄→+∞
∼

2π
k0ζ0

ℑ

{︂[︂
Ērefl*

· F (θi, ϕi ± π) + Ētr ∗
· F (π − θi, ϕi ± π)

]︂}︂
.

(27)

Hence, after normalization of Eq. (19) with the amplitude of the Poynting vector associated
with the incident plane wave, |Ēinc

|2/(2ζ0), the following generalized version of the OT can be
readily established:

σTSCS + σACS = −
4π

k0 |Ē
inc
|
2ℑ{[Ē

refl∗
· F(θi, ϕi ± π) + Ētr∗

· F(π − θi, ϕi ± π)]}. (28)

Here, σTSCS is the total scattering cross-section defined by the diffracted field, expressed
as a sum of the spherical wave contribution, σSWCS, and, only if ℜ{R} = 0, the guided wave
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contribution, σGWCS, i.e.,
σTSCS = σSWCS + σGWCS, (29a)

σSWCS =
1

|Ēinc
|
2

π∫
0

2π∫
0

|F(θ, ϕ)|2sθdθdϕ, (29b)

σGWCS = δℜ{R},0
8πζ2

0

|R| |Ēinc
|2

∫ 2π

0
|FP,p,≷(ϕ)|

2dϕ, (29c)

and σACS is the absorption cross-section defined as the normalized power evaluated on the
difference between the density power absorbed in the inhomogeneous and homogeneous cases.
The latter quantity can be reviewed as the sum of the variation due to the inhomogeneity of the
normalized power absorbed by the resistive plane deprived of the inhomogeneity, σACSext , and of
the normalized power absorbed by the inhomogeneity itself, σACSint , i.e.,

σACS = σACSext + σACSint , (30a)

σACSext =
ζ0ℜ{R}

|Ēinc
|
2

⎡⎢⎢⎢⎢⎣
∫

S∞−S′

(|J(ρ, ϕ)|2 − |J0(ρ, ϕ)|
2)dS −

∫
S′

|J0(ρ, ϕ)|
2dS

⎤⎥⎥⎥⎥⎦ , (30b)

σACSint =
ζ0ℜ{R′}

|Ēinc
|
2

∫
S′

|J(ρ, ϕ)|2dS. (30c)

It can be added that the variation of the total power subtracted from the incident plane wave
due to the inhomogeneity defines the so-called extinction cross-section, σECS, i.e.,

σECS = σTSCS + σACS. (31)

According to Eq. (28), the extinction cross-section is determined by two 3-D “shadow lobes”,
in the forward direction and in the reflection direction. Moreover, to better clarify the physical
meaning of Eq. (31), it is simple to verify that it reduces to the classical OT in [8] and [9] when
R → ∞, i.e., when the resistive plane is replaced by the free space.

In the presence of the infinite resistive plane, the combination of the homogeneous plane
waves introduced before cannot be used as a background field at the grazing incidence, θ = π/2.
Still, this configuration offers one more scattering scenario, absent in the case of the free-space
scattering. Indeed, the background field can be taken as a plane guided wave propagating along
the direction individuated by the angles θ = π/2 and ϕ = ϕi. In that case, the solution of the
background problem can be written as follows:

E0(r) = Ēinc
P,≷e−jk≷(w−

P ,φi)·r, (32a)

H0(r) =
1

k0ζ0
k≷

(︁
w−

P, ϕi
)︁
× E0(r), (32b)

where

Ēinc
C,≷ = Ēinc

C,ρi

⎛⎜⎜⎝ρ̂i ∓ j
w−

C√︂
w−2

C − k2
0

ẑ
⎞⎟⎟⎠ , (33a)

Ēinc
D,≷ = Ēinc

D,φi
ϕ̂i. (33b)

Of course, since forℜ{R}>0 the plane guided wave decays exponentially along the propagation
direction, only the case of ℜ{R} = 0 can be reasonably considered.
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Once again, by means of the stationary phase method and using Eqs. (12), (14), and (32), the
following asymptotic behavior for the first integral at the left hand-side of Eq. (19) can be stated
(see Appendix B):

1
2

∮
S̄

(︂
E0(r) × Hdiffr∗(r) + Ediffr (r) × H∗

0(r)
)︂
· r̂dS

r̄→+∞
∼

2π
k0ζ0

ℑ

{︂
Ēinc∗

P,≷ · FP,≷ (ϕi ± π)
}︂

.
(34)

To conclude, after normalization of Eq. (19) with the amplitude of the Poynting vector

associated with the incident plane guided wave for z = 0,
|︁|︁|︁Ēinc

P, ><

|︁|︁|︁2/(2ζ0), the OT in Eq. (31) can
be readily stated. In such a case,

σECS = −
4π

k0

|︁|︁|︁Ēinc
P,≷

|︁|︁|︁2ℑ
{︂
Ēinc∗

P,≷ · FP,≷ (ϕi ± π)
}︂

, (35)

whereas σTSCS and σACS can be obtained starting from Eqs. (29) and (30) by setting ℜ{R} = 0
and substituting Ēinc with Ēinc

P, ><
. Note that the right-hand part of (35) has the meaning of the

2-D shadow lobe magnitude in terms of the cylindrical guided wave.

5. Generalization to the dielectric case

The procedure detailed above can be straightforwardly generalized to the scattering from a thin
dielectric plate in the free space, which is characterized using the GBC with electric and magnetic
resistivities Re and Rm, respectively, and perturbed by a local planar inhomogeneity, characterized
using the similar GBC with electric and magnetic resistivities R′

e and R′
m, respectively, and will

be omitted in the following for the sake of brevity.
If the incident field is the plane wave defined in Eq. (22), by denoting with σGWCSq the guided

wave contribution to the total scattering cross-section arising for ℜ{Rq} = 0 with q = e, m, it is
possible to show that the OT in Eq. (31) can be stated as follows:

σECS =

−
4π

k0
|︁|︁Einc|︁|︁2ℑ

{︄[︄
Ērefl∗

·
∑︂

q=e,m
Fq (θi, ϕi ± π) + Ētr∗

·
∑︂

q=e,m
Fq (π − θi, ϕi ± π)

]︄}︄
,

(36a)

σTSCS = σSWCS +
∑︂

q=e,m
σGWCSq , (36b)

σSWCS =
1

|Ēinc
|
2

π∫
0

2π∫
0

|︁|︁|︁|︁|︁ ∑︂q=e,m
Fq(θ, ϕ)

|︁|︁|︁|︁|︁2sθdθdϕ, (36c)

σGWCSq = δℜ{Rq},0
8πζ2

0

|Rq | |Ē
inc

|2

∫ 2π

0
|Fq,P,p,≷(ϕ)|

2dϕ, (36d)

σACS = σACSext + σACSint , (36e)

σACSext =∑︂
q=e,m

ζ0ℜ
{︁
Rq

}︁|︁|︁Einc |︁|︁2 [︃∫
S∞−S′

(︃|︁|︁|︁Jq(ρ, ϕ)
|︁|︁|︁2 − |Jq0(ρ, ϕ)|

2
)︃

dS −

∫
S′

|︁|︁|︁Jq0(ρ, ϕ)
|︁|︁|︁2 dS

]︃
,

(36f)
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σACSint =
∑︂

q=e,m

ζ0ℜ{R′
q}

|Einc |
2

∫
S′

|Jq(ρ, ϕ)|
2dS, (36g)

where

Fe(θ, ϕ) = j2πk0(R′
e − Re)

(︄
cθ J̃e,ρ(k0sθ , ϕ)
|cθ | + 2Re

ζ0

θ̂ +
J̃e,φ(k0sθ , ϕ)

1
|cθ | +

2Re
ζ0

ϕ̂

)︄
, (37a)

Fm(θ, ϕ) = j2πk0ζ0(R′
m − Rm)

(︄
J̃m,φ(k0sθ , ϕ)

1
|cθ | + 2ζ0Rm

θ̂ −
cθ J̃m,ρ(k0sθ , ϕ)
|cθ | + 2ζ0Rm

ϕ̂

)︄
, (37b)

Fe,C,≷(ϕ, z) = −jπk0
(︁
R′

e − Re
)︁
J̃e,ρ

(︂
w+e,C, ϕ

)︂ (︄
2Re
ζ0

ρ̂ ±
w+e,C

k0
ẑ

)︄
, (37c)

Fe,D,≷(ϕ, z) =
jπk0ζ0 (R′

e − Re)

2Re
J̃e,φ

(︂
w+e,D, ϕ

)︂
ϕ̂, (37d)

Fm,C,≷(ϕ, z) = ∓
jπk0ζ0

(︁
R′

m − Rm
)︁

2
J̃m,ρ

(︂
w+m,C, ϕ

)︂
ϕ̂, (37e)

Fm,D,≷(ϕ, z) = −
jπk0

(︁
R′

m − Rm
)︁

2Rm
J̃m,φ

(︂
w+m,D, ϕ

)︂ (︄
±

1
2Rmζ0

ρ̂ +
w+m,D

k0
ẑ

)︄
, (37f)

the effective electric and magnetic surface current densities, Je(ρ, ϕ), Je0(ρ, ϕ) and Jm(ρ, ϕ),
Jm0(ρ, ϕ), are related to the jumps across the plane of the tangential to the plane component of the
magnetic and electric fields with and without the inhomogeneity, respectively [19], J̃q(w,ψ) is the
Fourier transform of the effective electric/magnetic surface current density on the inhomogeneity,

w±
e,C= ± k0

√︄
1 −

(︃
2Re
ζ0

)︃2
, (38a)

w±
e,D= ± k0

√︄
1 −

(︃
ζ0

2Re

)︃2
, (38b)

w±
m,C= ± k0

√︂
1 − (2ζ0Rm)

2, (38c)

w±
m,D= ± k0

√︄
1 −

(︃
1

2ζ0Rm

)︃2
, (38d)

are the poles of the Green’s function of the background problem, and w±
q,C and w±

q,D are proper
poles for ℑ{Rq}>0 and ℑ{Rq}<0, respectively. For the sake of completeness, it is worth
observing that, according to the GBC, ℜ{Re} = 0 ⇔ ℜ{Rm} = 0.

On the other hand, assuming that the incident field is the guided plane wave defined in Eq. (32),
the OT in Eq. (31) can be readily stated providing that

σECS = −
4π

k0

|︁|︁|︁Ēinc
P,≷

|︁|︁|︁2ℑ
{︄

Ēinc∗
P,≷ ·

∑︂
q=e,m

Fq,P,≷ (ϕi ± π)

}︄
, (39)

whereas σTSCS and σACS can be obtained starting from Eq. (36) by setting ℜ{R} = 0 and
substituting Ēinc with Ēinc

P,≷.
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6. Numerical results

In this Section, the theory developed in the previous Sections is applied to the case of a silver
disk-sealed circular hole in a thin dielectric plate with, just as an example, the same thickness (in
fact, different thicknesses of the disk and the plate can be taken provided that each of them is
much smaller than the free-space wavelength). In such a case, the scattering problem can be cast
to integral equations and solved numerically, with mathematically guaranteed convergence, by the
regularizing Helmholtz-Galerkin technique developed by the authors earlier [17,22]. Here, we use
the explicit expressions for the electric and magnetic resistivities obtained by applying Karlsson’s
compensation [23] to the well-established expressions of [19]. Note that the mentioned technique
is full-wave and meshless one; it has been extensively verified in [17,22] including comparison
with commercial software.

The analysis will be carried out in the visible range, where the silver relative dielectric
permittivity, ε′r, is a complex-valued function of the wavelength, with the real part varying from
small positive values in UV to large negative ones at the rest of the range. To this purpose, the
experimental data presented in [24], together with the Akima spline interpolation algorithm, will
be used to obtain the relative dielectric permittivity at any wavelength of interest. As known [25],
the infinite flat layer of a noble metal in the free space supports the propagation of two hybrid
2-D surface plasmon guided waves, symmetric or “long-range” (HSP+) and anti-symmetric or
“short-range” (HSP−) ones. The latter wave has a remarkable property: the thinner the layer,
the larger the propagation constant, i.e., the shorter the length of that wave and the stronger the
field confinement. In contrast, the former wave has the propagation constant very close to the
free-space wavenumber. The same two HSP guided waves can also propagate on a metal layer as
cylindrical 3-D waves, with the same propagation constants as the 2-D waves.

Moreover, on a finite thin metallic object – the silver disk in our case – the surface plasmon
guided waves are able to reflect from the object rim and form standing waves. Therefore, the metal
disk can be viewed as Fabry–Perot-like circular resonator, which possesses the corresponding
natural modes. Here, the reasonable Q-factor modes originate only from the “short-range”
plasmon guided wave HSP− because its field is well compressed to the disk.

In the following, these disk plasmon modes will be denoted as Pmn, where the subscripts m and
n account for the azimuthal and radial variations, respectively. The resonances on these modes
are simply individuated by the peaks of the scattering and absorption characteristics defined
in Eq. (36). For the sake of simplicity of notation, henceforth, the following acronyms will be
introduced:

- ACSext: absorption cross-section associated with the variation due to the inhomogeneity of the
power absorbed by the thin dielectric plate deprived of the inhomogeneity;

- ACSint: absorption cross-section associated with the power absorbed by the inhomogeneity;

- GWCSq with q = e, m: guided wave contribution to the total scattering cross-section arising
for ℜ{Rq} = 0;

- SWCS: spherical wave contribution to the total scattering cross-section.

As the first example, shown in Fig. 4, comparisons are provided between a silver disk in
a homogeneous lossless medium (case 1) and a silver disk in a lossless thin dielectric plate
immersed in vacuum (case 2) for the wavelength varying in the visible range. The medium in case
1 and the plate in case 2 have the same relative dielectric permittivity, which assumes 3 different
values, εr = 1, 2.25, 12. Moreover, the silver disk radius is a = 50 nm, the disk and dielectric
plate thickness is τ = 20 nm, and the plane wave normally impinges onto the scatterers (θi = 0◦),
i.e., the incident field is homogeneous on the scatterer surface, thus exciting only the Fourier
harmonics of order ±1. This phenomenon can be simply explained observing that the azimuthal
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harmonics are independent of each other due to the azimuthal symmetry of the problem at hand,
and that the only non-vanishing Fourier harmonics contribution of an in-plane homogeneous
field are the ones of order ±1. Of course, for εr = 1, we have exactly the same structure in both
the cases: a silver disk in vacuum. Hence, as expected, the corresponding behavior of SWCS and
ACSint is exactly the same (see the first subpanel of Figs. 4(a) and 4(b)). Moreover, no guided
waves can be excited without a dielectric plate, hence, GWCSe and GWCSm vanish in case 2.
A maximum can be clearly observed associated with the plasmon mode resonance P11 of the
silver disk, which will be discussed later. By increasing the relative dielectric permittivity, this
resonance up-shifts in both cases (see the second and third subpanels of Figs. 4(a) and 4(b)).
However, in case 2, the shift is smaller and, despite what happens in case 1, the peaks become
wider, thus implying a poorer confinement of the field, i.e., a lower value of the associated
quality factor. Moreover, guided waves are excited in the dielectric plate. The amplitude of
GWCSe increases by increasing the relative dielectric permittivity of the plate, becoming even
larger than ACSint and SWCS for εr = 12. Since GWCSm cannot be appreciated in Fig. 4(b), a
zoom in logscale of both GWCSe and GWCSm is provided in Figs. 4(c) and 4(d), respectively.
Such figures confirm that GWCSm ≪ GWCSe. This result can be explained by observing the
subsequent figures. In the frequency range of interest, Fig. 4(e) shows the purely imaginary
electric and magnetic resistivities of the dielectric plate, Re and Rm, normalized to the intrinsic
impedance of vacuum, whereas, the variation with respect to the free space wavenumber of the
(real) propagation constants of the associated guided waves, w+e,D and w+m,D, are plotted in Fig. 4(f).
As can be clearly seen, the larger values of the normalized magnetic resistivity are reflected in a
propagation constant of the corresponding guided wave very close to the free space wavenumber,
and, hence, in a poor confinement of the guided wave. On the contrary, the larger values of
GWCSe, comparable with ACSint and SWCS, are associated with a stronger confinement of the
wave caused by smaller values of the normalized electric resistivity and, consequently, larger
with respect to the free space wavenumber values of the associated propagation constant.

The behavior of GWCSe for εr = 2.25 in Fig. 4(c) exhibits a minimum at the wavelength
315.7 nm (marked in the figure). Moreover, minima at about the same wavelength can be
appreciated even observing the behavior of SWCS and GWCSm in Figs. 4(b) and 4(d), respectively,
and the behavior of SWCS, GWCSe, and, for a lossy dielectric plate, of ACSext in the subsequent
figures. These minima can be explained by observing that the wavelength 315.7 nm is very close
to the wavelength 316.2 nm at which |ε′r − 2.25|, where ε′r = 0.74 − j0.84, assumes the minimum
value, of about 1.7, in the visible range. Hence, at this wavelength, the diffracted field reduces
significantly because the discontinuity between the silver disk and the dielectric plate is softened,
thus resulting in a sort of “invisibility” of the silver disk in the background environment, i.e.,
the inhomogeneous structure behaves almost like a homogeneous one. It is interesting to note
that, at the same wavelength, ACSint does not show that kind of minimum because the silver disk
losses cannot be neglected due to the significant imaginary part of ε′r. To conclude, it is worth
observing that such an effect cannot be appreciated for εr = 12 because the minimum value of
|ε′r − 12| in the visible range is too large (about 6 time larger than |ε′r − 2.25|).

In Figs. from 5 to 8, the scattering from a silver disk in a lossless thin dielectric plate, with a
relative dielectric permittivity εr = 2.25, and in a lossy dielectric plate with a relative dielectric
permittivity εr = 2.25(1 − j10−2) is analyzed for varying values of the wavelength in the visible
range. The reason for choosing such a small imaginary part of the relative permittivity of the
dielectric plate is the need of clearly showing the relation between the power associated with
the guided waves arising for εr = 2.25 and the variation due to the inhomogeneity of the power
absorbed by the dielectric plate deprived of the inhomogeneity region for εr = 2.25(1 − j10−2),
being the power associated with the spherical wave and the power absorbed by the silver disk
very close to each other in the two cases examined.
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𝑎 = 50 nm
𝜏 = 20 

Fig. 4. Normal incidence of the plane wave onto a silver disk of radius a = 50 nm in
(a) a lossless homogeneous medium, and (b), (c) and (d) a lossless dielectric plate, for
structure thickness τ = 20 nm and relative dielectric permittivity εr = 1, 2.25, 12. Behavior
in the optical range of: (a) SWCS and ACSint for the homogeneous medium case; (b)
SWCS, ACSint, GWCSe, GWCSm, (c) GWCSe, (d) GWCSm for the dielectric plate case.
(e) Resistivities and (f) propagation constants of the guided waves in a lossless dielectric
plate of thickness τ = 20 nm and relative dielectric permittivity εr = 2.25, 12.

In Fig. 5, the silver disk radius is a = 50 nm, 3 values of the structure thickness are
τ = 5, 10, 20 nm, and normal incidence of the plane wave is considered. The plots in Figs. 5(a)
and 5(b) show that the resonance wavelength up-shifts by decreasing the thickness of the structure.
This is because of the mentioned property of the hybrid plasmon guided wave HSP−, which is
responsible for the disk plasmon modes: the thinner the metal layer, the shorter the wavelength
of that wave [25]. Moreover, the peaks get narrower for the smaller thickness, i.e., the mode
Q-factors get higher. To conclude, higher order resonances of the kind P1n are excited for smaller
values of the thickness as evidenced by the new peaks marked in Fig. 5(d).
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𝑎 = 50 nm
𝜀 = 2.25 𝜀 = 2.25

Fig. 5. Normal incidence of the plane wave onto a silver disk of radius a = 50 nm in a
lossless/lossy dielectric plate of the relative permittivity εr = 2.25/εr = 2.25(1 − j10−2)
for structure thickness τ = 5, 10, 20 nm. Behavior in the optical range of: (a) SWCS,
ACSint, GWCSe, and GWCSm for the lossless case; (b) SWCS, ACSint, and ACSext for the
lossy case; (c) SWCS and (d) ACSint for the lossless case and the lossy case, respectively;
(e) GWCSe for the lossless case and ACSext for the lossy case.
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𝜀 = 2.25 𝜀 = 2.25 1 ― j10 𝜏 = 10 nmFig. 6. Normal incidence of the plane wave onto a silver disk in a lossless/lossy dielectric plate
of relative permittivity εr = 2.25/εr = 2.25(1 − j10−2) for structure thickness τ = 10 nm
and disk radius a = 20, 50, 100 nm. Behavior in the optical range of: (a) SWCS, ACSint,
GWCSe, and GWCSm for the lossless case; (b) SWCS, ACSint, and ACSext for the lossy case;
(c) SWCS and (d) ACSint for the lossless case and the lossy case, respectively; (e) GWCSe
for the lossless case and ACSext for the lossy case.

Direct comparisons between SWCS and ACSint for the lossless and the lossy cases are provided
in Figs. 5(c) and 5(d). A small discrepancy, which increases by decreasing the thickness, can be
observed on SWCS, whereas ACSint does not show appreciable variations. On the other hand,
since the guided waves cannot carry the power to infinity in the lossy case, GWCSe and GWCSm
are replaced by ACSext in that case. As stated before, GWCSm can be neglected (henceforth this
assumption will be implicitly done), hence, just comparisons between GWCSe in the lossless
case and ACSext in the lossy case are shown in Fig. 5(e). Even in such a case, a similar behavior
can be appreciated with discrepancies that increase by decreasing the thickness.



Research Article Vol. 32, No. 17 / 12 Aug 2024 / Optics Express 29048

𝜃𝑖 = 30° 𝜙𝑖 = 0°
𝑎 = 50 nm 𝜀 = 2.25 𝜀

Fig. 7. TE incidence of the plane wave, with incidence angles θi = 30◦ and ϕi = 0◦, onto a
silver disk of radius a = 50 nm in a lossless/lossy dielectric plate of relative permittivity
εr = 2.25/εr = 2.25(1 − j10−2) for structure thickness τ = 5, 10, 20 nm. Behavior in the
optical range of: (a) SWCS, ACSint, GWCSe, and GWCSm for the lossless case; (b) SWCS,
ACSint, and ACSext for the lossy case; (c) SWCS and (d) ACSint for the lossless case and the
lossy case, respectively; (e) GWCSe for the lossless case and ACSext for the lossy case.

Figure 6 shows the results of the analysis for 3 values of the silver disk radius, a = 20, 50, 100 nm,
structure thickness τ = 10 nm, and normal incidence of the plane wave. Figures 6(a) and 6(b)
clearly show that the resonance wavelength up-shifts by increasing the disk radius. Moreover, the
peaks are wider the larger the radius is. As expected, new peaks can be observed for larger size
of the disk, i.e., for increasing values of the disk radius, associated with higher order resonances
on the modes P1n (see the peaks marked in Fig. 6(d)). Direct comparisons between SWCS and
ACSint for the lossless and the lossy cases are provided in Figs. 6(c) and 6(d). Once again, small
discrepancies, which decrease by increasing the disk radius, can be observed on SWCS, whereas
ACSint does not show appreciable variations. Comparisons between GWCSe in the lossless case
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𝜃𝑖 = 30° 𝜙𝑖 = 0°
𝑎 = 50 nm 𝜀

Fig. 8. TM incidence of the plane wave, with incidence angles θi = 30◦ and ϕi = 0◦, onto a
silver disk of radius a = 50 nm in a lossless/lossy dielectric plate of relative permittivity
εr = 2.25/εr = 2.25(1 − j10−2) for structure thickness τ = 5, 10, 20 nm. Behavior in the
optical range of: (a) SWCS, ACSint, GWCSe, and GWCSm for the lossless case; (b) SWCS,
ACSint, and ACSext for the lossy case; (c) SWCS and (d) ACSint for the lossless case and the
lossy case, respectively; (e) GWCSe for the lossless case and ACSext for the lossy case.

and ACSext in the lossy case are provided in Fig. 6(e) showing discrepancies that decrease by
increasing the disk radius.

In Figs. 7 and 8, the cases with silver disk radius a = 50 nm, 3 values of the structure thickness,
τ = 5, 10, 20 nm, and, respectively, oblique TE and TM incidences of the plane wave with
θi = 30◦ and ϕi = 0◦ are considered. All the considerations done with reference to the behavior in
Fig. 5 can be immediately extended to these cases. As a matter of fact, the resonance wavelength
up-shifts by decreasing the structure thickness, the peaks get narrower for the smaller thickness,
and higher order resonances on the modes P1n are excited. However, since here all the cylindrical
harmonics are present, apart from the peaks observed for the normal incidence, new peaks arise
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𝑎 = 50 nm
𝜀 = 2.25 𝜏 = 5 nm

Fig. 9. Plane-wave scattering from a silver disk of radius a = 50 nm in a lossless dielectric
plate of relative permittivity εr = 2.25 for structure thickness τ = 5 nm. (a) Behavior in the
optical range of ACSint for normal incidence, and for TE and TM incidences with incidence
angles θi = 30◦ and ϕi = 0◦. Electric field behavior at the resonance wavelengths marked in
(a) for oblique TM incidence of the plane wave with θi = 30◦ and ϕi = 0◦: (b) λ = 378.8 nm;
(c) λ = 415.0 nm; (d) λ = 533.4 nm; (e) λ = 701.7 nm.
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𝜆 = 415.0 nm 𝜆 = 533.4 nm 𝜆 = 701.7 nm

𝑎 = 50 nm
𝜀 = 2.25

Fig. 10. Plane-wave scattering from a silver disk of radius a = 50 nm in a lossless dielectric
plate of relative permittivity εr = 2.25. Behavior in the optical range and for varying values
of the structure thickness, τ, of ACSint and GWCSe for: (a) and (b) normal incidence, (c) and
(d) TE incidence with incidence angles θi = 30◦ and ϕi = 0◦, (e) and (f) TM incidence with
incidence angles θi = 30◦ and ϕi = 0◦.

associated with different azimuth harmonic orders, i.e., of the kind Pmn for m ≠ 1. These new
peaks are marked in Figs. 7(d) and 8(d) and will be discussed in the following. By comparing
Figs. 5(d), 7(d), and 8d, it is worth observing that a smaller thickness allows for a better distinction
between the resonance behavior for the normal and oblique TE and TM incidences due to the
higher quality factors of the involved plasmon modes.

To conclude, in Figs. 9 and 10, a detailed analysis of the visible-range plasmon mode resonances
of a silver disk of radius a = 50 nm in a lossless dielectric plate of relative dielectric permittivity
εr = 2.25, for normal incidence, and oblique TE and TM incidences of the plane wave with
θi = 30◦ and ϕi = 0◦, is presented. In Fig. 9(a), we show the spectra of ACSint for structure
thickness τ = 5 nm, where we mark the resonance wavelengths. As stated before, with such
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a choice the resonances excited for the normal and oblique TE and TM incidences are clearly
identified and distinguished. The most pronounced peak is at the wavelength 701.7 nm for all
the cases examined, i.e., for normal and oblique TE and TM incidences. It is related to the
fundamental plasmon-mode resonance of the silver disk for m = 1, i.e., P11. Another, less
pronounced, peak at the wavelength 378.8 nm can be also observed in all the cases examined. It
is associated with the higher order plasmon mode resonance with the same azimuthal behavior,
P12. Unlike the normal incidence case, a new peak at the wavelength 533.4 nm, associated with
the plasmon mode resonance P21, can be observed for both the TE and TM oblique incidence.
Moreover, an extra peak at the wavelength 415.0 nm, related to the plasmon mode resonance P01,
arises only at the oblique TM incidence because, for the TE incidence, the zero-order azimuthal
harmonic of the component of the total field along the z axis vanishes and, hence, a plasmon
wave cannot be supported. For the sake of completeness, the amplitude of the total electric field
for all the resonance wavelengths marked in Fig. 9(a) are reconstructed in Figs. 9(b) to 9(e) for
the oblique TM incidence of the plane wave with θi = 30◦ and ϕi = 0◦. It is worth observing that
a larger field enhancement is obtained for the larger values of the resonance wavelengths. This,
in turn, is directly related to the larger values of the quality factors of the plasmon modes that,
according to the Drude model, have the order of ℜ{−ε′r(λ

P
mn)}/ℑ{ε

′
r(λ

P
mn)} ∼ O(λP

mn)
2 in the

visible range, with λP
mn denoting the resonance wavelength on the mode Pmn. Moreover, in order

to qualitatively appreciate the low of variation of the resonance wavelengths as a function of the
structure thickness, the behavior of GWCSe and ACSint, for varying values of the wavelength
in the visible range and of the thickness in the range 5-20 nm, are provided in Fig. 10. The
explained above properties of the “short-range” hybrid surface plasmon wave of thin metal layer
allow to reach the conclusion that λP

mn = const a
τ . This type of behavior is well visible in Fig. 10,

although exact values of the plasmon-mode resonance frequencies depend on the parameters of
the dielectric plate, in which the hole, sealed with the silver disk, is cut.

7. Conclusion

A new Optical Theorem has been proposed for the 3-D scattering from a locally perturbed
resistive plane and dielectric lossless or lossy plate. The proposed approach takes into account
the outgoing cylindrical guided waves excited due to the diffraction from the inhomogeneity, by
integrating them with the classical outgoing spherical wave, satisfying the Silver-Muller radiation
condition. Moreover, the analysis of the absorption is carried out in a “perturbative sense” by
means of the introduction of a new quickly evaluable parameter whose physical meaning is
inferred by the conservation of power principle. The proposed formulation has been successfully
applied to the analysis of the power budget of the plane-wave scattering from a thin dielectric
plate with a circular hole, sealed with a silver nanodisk, in the visible-light range. Such a disk
resonates at the wavelengths of the plasmon modes. Our analysis has demonstrated that, in
the disk resonances, the cylindrical guided waves of the dielectric plate can carry the power,
comparable with the power scattered into the free-space half-spaces.

Appendix A

This Appendix is aimed at demonstrating Eq. (10) for ℜ{R}>0, being the generalization to the
case ℜ{R} = 0 straightforward, and Eq. (12).

The function Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rw is analytic in the regions of the complex plane w = wR+jwI

delimited by the contours Cl with l = 1, 2 sketched in Figs. 11 except for w = w+P where it
has a simple pole singularity. Moreover, for w → ∞, such a function exhibits an asymptotic
exponential decay almost everywhere in the half-plane wI ≥ 0 (wI ≤ 0) for cφ−ψ ≤ 0 (cφ−ψ ≥ 0).
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≤ 0 (𝑐𝜙―𝜓 ≥ 0)
 

Fig. 11. Integration paths in the complex plane.

By means of Cauchy’s integral and residue theorems, it is possible to write

lim
r0→0

r1→+∞

∮
C1

Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdw = 0, (40a)

lim
r0→0

r2→+∞

∮
C2

Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdw = −2πjẼdiffr

P,≶(ψ)e
−jk≶(w

+
P ,ψ)·rw+P. (40b)

For cφ−ψ ≤ 0, by invoking Jordan’s lemma and observing that the contour C1 detours around
the branch point k0 like the contour C in Fig. 2(a), i.e., in clockwise sense, Eq. (40a) can be
equivalently written as follows:∫

C
Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdw = −

∫ +∞

0
Ẽdiffr
≶ (jwI ,ψ) e−jk≶(jwI ,ψ)·rwIdwI . (41)

On the other hand, for cφ−ψ ≥ 0, according to Jordan’s lemma and noting that the contour C2
detours around k0 counterclockwise, the following equivalent expression for Eq. (40b) can be
obtained: ∫

C
Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdw

=

∫ k0

0

(︂
Ẽdiffr
≶ (wR,ψ)e−jk≶(wR,ψ)·r

− Ẽdiffr
−,≶(wR,ψ)e−jk

−,≶(wR,ψ)·r
)︂

wRdwR

−

∫ +∞

0
Ẽdiffr
−,≶(−jwI ,ψ)e−jk

−,≶(−jwI ,ψ)·rwIdwI

− 2πjẼdiffr
P,≶(ψ)e

−jk≶(w+P ,ψ)·rw+P.

(42)

Since

Ediffr(r) =
∫ 2π

0

∫
C

Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdwdψ

=

∫
cφ−ψ ≥0

∫
C

Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdwdψ

+

∫
cφ−ψ ≤0

∫
C

Ẽdiffr
≶ (w,ψ)e−jk≶(w,ψ)·rwdwdψ,

(43)
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by using Eqs. (41) and (42), the diffracted electric field can be simply written as follows:

Ediffr (︁
r
)︁
=

∫
cφ−ψ ≥0

⎡⎢⎢⎢⎢⎣
k0∫

0

(︂
Ẽdiffr
≶ (wR,ψ) e−jk≶(wR,ψ)·r

− Ẽdiffr
−,≶ (wR,ψ) e−jk

−,≶(wR,ψ)·r
)︂

wRdwR

−

+∞∫
0

Ẽdiffr
−,≶ (−jwI ,ψ) e−jk

−,≶(−jwI ,ψ)·rwIdwI

−2πjẼdiffr
P,≶ (ψ) e−jk≶(w

+
P ,ψ)·rw+P

]︂
dψ

−

∫
cφ−ψ ≤0

+∞∫
0

Ẽdiffr
≶ (jwI ,ψ) e−jk≶(jwI ,ψ)·rwIdwIdψ.

(44)

On the other hand, according to Eqs. (6), (7), and (8), the integration domain of the last integral
at the right-hand side of Eq. (44) can be changed as follows:∫

cφ−ψ ≤0

+∞∫
0

Ẽdiffr
≶ (jwI ,ψ) e−jk≶(jwI ,ψ)·rwIdwIdψ

=

∫
cφ−ψ ≥0

+∞∫
0

Ẽdiffr
≶ (jwI ,ψ + π) e−jk≶(jwI ,ψ+π)·rwIdwIdψ

=

∫
cφ−ψ ≥0

+∞∫
0

Ẽdiffr
≶ (−jwI ,ψ) e−jk≶(−jwI ,ψ)·rwIdwIdψ.

(45)

As a result, Eq. (10) can be immediately obtained by substituting Eq. (45) in Eq. (44).
Now, in order to demonstrate Eq. (12), let us consider Eq. (10).
For r → +∞ and ψ ≠ 0, π, the integrand (Ẽdiffr

≶ (−jwI ,ψ)e−jk≶(−jwI ,ψ)·r + Ẽdiffr
−,≶(−jwI ,ψ)

e−jk
−,≶(−jwI ,ψ)·r)wI has an asymptotic exponential decay. Moreover, for ψ = 0, π, the stationary

phase method leads to the stationary phase point wI = 0 at which such integrand vanishes. Hence,
the corresponding integral asymptotically vanishes.

On the other hand, the function Ẽdiffr
−,≶(wR,ψ)e−jk

−,≶(wR,ψ)·rwR has no stationary phase points,
whereas Ẽdiffr

≶ (wR,ψ)e−jk≶(wR,ψ)·rwR has a stationary phase point for wR = k0sθ and ψ = ϕ. Hence,
by means of the stationary phase method, it is simple to show that∫

cφ−ψ ≥0

∫ k0

0

(︂
Ẽdiffr
≶ (wR,ψ) e−jk≶(wR,ψ)·r

− Ẽdiffr
−,≶ (wR,ψ) e−jk

−,≶(wR,ψ)·r
)︂

wRdwRdψ

r→+∞
∼

e−jk0r

r
F(θ, ϕ).

(46)

Moreover, due to the stationary phase point of the function Ẽdiffr
P,≶(ψ)e

−jk≶(w+P ,ψ)·r for ψ = ϕ, it
is possible to write∫

cφ−ψ ≥0
Ẽdiffr

P,≶(ψ)e
−jk≶(w

+
P ,ψ)·rdψ ρ→+∞

∼ ej π4

⌜⃓⃓⎷2
(︂
w+2

P − k2
0

)︂
πw+3

P ρ
e−jk≶(w

+
P ,φ)·rFP,≶(ϕ). (47)

According to the considerations detailed above and using Eqs. (46) and (47) in (10), Eq. (12)
can be immediately obtained.
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Appendix B

In this Appendix it is demonstrated that the behavior for r̄ → +∞ of the first integral at the
left-hand side of Eq. (19) can be expressed in closed form for the incident fields in Eqs. (22) and
(32).

Supposing that the incident field is the plane wave in Eq. (22), according to Eq. (26), it is
possible to decompose the first integral at the left-hand side of Eq. (19) as follows:

1
2

∮
S̄

(E0(r) × Hdiffr∗(r) + Ediffr(r) × H∗
0(r)) · r̂dS

=
1
2

∫
S̄+

(Einc(r) × Hdiffr∗(r) + Ediffr(r) × Hinc∗(r)) · r̂dS

+
1
2

∫
S̄+

(Erefl(r) × Hdiffr∗(r) + Ediffr(r) × Hrefl∗(r)) · r̂dS

+
1
2

∫
S̄−

(Etr(r) × Hdiffr∗(r) + Ediffr(r) × Htr∗(r)) · r̂dS,

(48)

where S̄± denotes the upper/lower half-sphere. For r̄ → +∞, it is simple to show that the integrand
of the first integral has no stationary phase points among the integration directions, whereas
the integrands of the second and third integrals have stationary phase points along the specular
with respect to the incident direction, (θi, ϕi ± π), and the forward direction, (π − θi, ϕi ± π),
respectively. Since θi<π/2, the cylindrical guided wave exhibits an exponential decay along
such directions (independently of the plane resistivity R), and, hence, only the spherical wave
asymptotically contributes to the integral. Because of these considerations, Eq. (27) can be
readily obtained by means of the stationary phase method.

If the incident field is the plane guided wave in Eq. (32), according to Eqs. (12) and (14), the
first integral at the left-hand side of Eq. (19) can be decomposed as follows:

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

(E0(r) × Hdiffr∗(r) + Ediffr(r) × H∗
0(r)) · r̂dS

⎫⎪⎪⎬⎪⎪⎭
=

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

(E0(r) × Hdiffr∗
sph (r) + Ediffr

sph (r) × H∗
0(r)) · r̂dS

⎫⎪⎪⎬⎪⎪⎭
+

1
2
ℜ

⎧⎪⎪⎨⎪⎪⎩
∮

S̄

(E0(r) × Hdiffr∗
cyl (r) + Ediffr

cyl (r) × H∗
0(r)) · r̂dS

⎫⎪⎪⎬⎪⎪⎭

(49)

For r̄ → +∞, it can be demonstrated that both the integrands at the right-hand side have
two stationary phase points along the backward and the forward directions, i.e., (π/2, ϕi) and
(π/2, ϕi ± π), respectively. However, according to Eqs. (12–14), it is simple to conclude that
the integrand associated with the spherical wave vanishes for θ = π/2, and it is possible to
demonstrate that the integrand associated with the cylindrical guided wave is non-vanishing only
along the forward direction and only if the involved cylindrical and plane guided waves are both
TM/TE with respect to the propagation direction. Based on these considerations, Eq. (34) can be
readily obtained by means of the stationary phase method.
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