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Abstract: We study, apparently for the first time, the threshold conditions for the time-harmonic
natural modes of the micro-to-nanosize plasmonic laser shaped as a circular quantum wire with a
flat graphene strip, placed symmetrically inside it, in the H-polarization case. We suppose that the
quantum wire is made of a nonmagnetic gain material, characterized with the aid of the “active”
imaginary part of the complex refractive index. The emergence of lasers integrating plasmonic
effects marks a significant trend in contemporary photonics. Here, the graphene offers a promising
alternative to the noble metals as it exhibits the capacity to sustain plasmon-polariton natural
surface waves across the infrared and terahertz (THz) spectra. The used innovative approach is
the lasing eigenvalue problem (LEP), which is classical electromagnetic field boundary-value
problem, adapted to the presence of active region. It is tailored to deliver both the mode-specific
emission frequency, which is purely real at the threshold, and the value of the gain index of
the active region, necessary to make the frequency real-valued. The conductivity of graphene
is characterized using the quantum Kubo formalism. We reduce the LEP for the considered
nanolaser to a hyper-singular integral equation for the current on the strip and discretize it by
the Nystrom-type method. This method is meshless and computationally economic. After
discretization, a matrix equation is obtained. The sought for mode-specific pairs {the frequency
and the threshold gain index} correspond to the zeros of the matrix determinant. It should
be noted that the convergence to exact LEP eigenvalues is guaranteed mathematically if the
discretization order is taken progressively larger. Two families of modes are identified and
studied: the modes of the quantum wire, perturbed by the presence of the graphene strip and
the plasmon modes of the strip. The frequencies of all plasmon modes and the lowest mode of
the quantum wire are found to be well-tuned by changing the chemical potential of graphene.
Engineering analytic formulas for the plasmon-mode frequencies and thresholds are derived. We
believe that the presented results can be used in the creation of single-mode tunable micro and
nanolasers.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The development of lasers that incorporate plasmonic effects represents a promising trend
in modern photonics [1]. Nanowire lasers, proposed in [2–6], exemplify the ongoing trends
towards miniaturization. A pivotal advancement in scaling down the size of lasers came with
the introduction of noble-metal based nanoparticles as open cavities operating on the plasmon
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modes [7]. The first plasmonic nanolasers, a.k.a. spasers, were experimentally demonstrated
in [8–10]. Subsequently, this category of nanolasers underwent extensive development and
refinement [11–15].

A sheet of graphene, a revolutionary 2D material, has the capability to support plasmon-
polariton natural surface wave in both the infrared and THz ranges [16,17]. If graphene is
patterned, for instance, as a strip of finite width, then it forms an open resonator, where the natural
modes are generated by the plasmon wave, reflected from the strip edges. What is especially
attractive for applications, the graphene conductivity and hence the plasmon mode frequencies can
be dynamically controlled through the application of electrostatic or magnetostatic bias. Graphene
conductivity σ is a function of the frequency f, chemical potential µc, electron relaxation time τ
and temperature T, σ = σ(f , µc, τ, T). It can be obtained from the Kubo formalism [16,17]. The
dynamic control of graphene’s conductivity offers significant flexibility in tailoring the behavior
of graphene-based devices, including sensors, absorbers, and antennas [18–22]. It is natural
to suggest that patterned graphene can replace noble-metal particle and serve as a resonance
element of plasmonic nanolaser [23,24]. Here, graphene’s tunability has the potential to enable
control over emission frequency and threshold, opening up exciting possibilities for tunable laser
emission. Taking into account that graphene is able to support surface plasmon polariton waves
at much lower frequencies than noble metals, its application can downshift the operation range of
the plasmonic nanolasers.

From the viewpoint of computational electromagnetics, “atomic” thickness of graphene allows
assuming it to have zero thickness and characterizing with the aid of resistive-sheet boundary
conditions [16]. Note that these conditions are more complicated than those for the perfect
electrical conductor (PEC), however, they turn to the latter if the conductivity tends to infinity. The
resistivity of graphene is also called the surface impedance; it is the inverse of the complex-valued
surface conductivity given by the Kubo formulas. Here, it is worth noting that sometimes
graphene is characterized with the aid of effective dielectric permittivity, which is taken as
Kubo’s surface conductivity divided by the empirically selected thickness (usually 1-2 nm) [21].

To address the eigenvalue electromagnetic field problem (i.e. without external sources) from the
viewpoint of lasing threshold, we will use the LEP approach. This approach is custom-designed
to provide the real-valued modal frequencies and the corresponding values of the gain index in
the active region, necessary to make the eigenfrequency of open cavity real-valued. Here, the
vanishing of the imaginary part of the eigenfrequency is identified with the threshold of stationary
emission; moreover, it was shown in [25] that this is equivalent to the classical definition of
threshold as “total loss= total gain” condition. Unlike the conventional eigenvalue problem based
on the Q-factor theory for a passive optical cavity, LEP takes into account the active region’s size,
shape, and position in comprehensive manner. This enables using the active-region geometry as
engineering parameter to manipulate the gain-index threshold value via controlling the overlap
between the mode electric field pattern and the active region [25].

At first, the LEP formalism was successfully applied to study the threshold conditions of
various microcavity laser configurations, fully or partially filled in with gain material [26–29].
Later, it was used to analyze the modes of the noble-metal nanolasers, namely, a silver strip
[30] and a silver tube [31] inside the circular quantum wire (QWR) as active region. More
recently, the threshold conditions for the modes of nanolasers composed of a single and a pair of
graphene-covered circular QWRs were studied in [32,33]. The mode-specific threshold analysis
helps determine the minimum pump power required to initiate lasing action. By understanding
the threshold conditions, one can optimize the laser design and parameters to achieve efficient
operation. Together with the emission frequency analysis, such study shows how to achieve the
single-mode operation by manipulating either the pump level or the gain frequency envelope.
Besides, the quantum dots and wires often exhibit blinking, characterized by erratic luminosity
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caused by random fluctuations. However, employing a resonant element can effectively stabilize
quantum wires, mitigating the blinking phenomena [34].

In this paper, we consider the circular QWR of non-magnetic gain material, equipped with flat
graphene strip located in the QWR center – see Fig. 1.

Fig. 1. Cross-sectional geometry of the circular QWR with the zero-thickness graphene strip 
inside.

2. Modified eigenvalue problem statement

The cross-section of a circular QWR of the radius 𝑎, loaded with a zero-thickness graphene 
strip of the width 2𝑑, is shown in Fig. 1. The wire axis is co-located with the strip middle line 
and coincides with the z-axes of Cartesian (x,y,z) and cylindrical (r,,z) coordinates. The 
material of the wire is characterized by the complex refractive index, 𝑣 = 𝛼 ― 𝑖𝛾. We suppose 
that the QWR consists of the gain material, so that 𝛼 > 0, 𝛾 > 0. The structure is infinite along 
the z-axis that allows considering two orthogonal polarizations of the electromagnetic field 
separately. We consider the 𝐻- polarization case (magnetic field vector is parallel to the 𝑧 -
axis), since the plasmon modes of the graphene strip are known to be absent in the 𝐸 -
polarization case. The time dependence exp( ―𝑖 𝜔𝑡) is assumed and omitted.

The H-polarized field can be conveniently characterized with the aid of the z-component of 
magnetic field. This component has to satisfy a two-dimensional (2-D) boundary-value 
problem in the laser cross-section for the Helmholtz equation with wavenumber 𝑘 = 𝜔/𝑐 
(where c is the light velocity) out of QWR and 𝑘1 = 𝑘𝑣 inside QWR. This problem has the 
following set of the boundary conditions: 
the resistive-sheet conditions at the graphene strip,

𝐸+
𝑦 = 1

𝜎(𝐻+
𝑧 ― 𝐻―

𝑧 ),|𝑥| < 𝑑,𝑦 = 0, (1)

𝐸+
𝑦 = 𝐸―

𝑦 ,|𝑥| < 𝑑,𝑦 = 0, (2)
the tangential component continuity conditions at the QWR boundary,

𝐸+
𝑦 = 𝐸―

𝑦 ,𝑟 = 𝑎,𝜙 ∈ [0,2𝜋), (3)

𝐻+
𝑧 = 𝐻―

𝑧 ,𝜙 ∈ [0,2𝜋), (4)
where symbols “ ± ” denote the limit values of the field components above (for “+”) or below 
(for “−”) the interfaces, the Sommerfeld radiation condition at the infinity, 

∂𝐻𝑧

∂𝑟
―𝑖𝑘𝐻𝑧 = 𝑜 1

𝑟
, 𝑟→∞, (5)

where 𝑟 is the distance, and the local power finiteness condition (the edge condition),

∫Ω |𝐻𝑧|2 + |𝑘Z0∇𝐻𝑧|2 𝑑𝑠 < ∞, (6)
where Ω ⊂ 𝑅2 is an arbitrary domain and 𝑍0 = 120𝜋𝛺 is the free-space impedance. In the case 
of zero thickness graphene strip, (6) is equivalent to 𝐻𝑧 = 𝑂( 𝜌) and |∇𝐻𝑧| = 𝑂(1/ 𝜌), if the 
distance to the edge 𝜌→0.

Fig. 1. Cross-sectional geometry of the circular QWR with the zero-thickness graphene
strip inside.

2. Modified eigenvalue problem statement

The cross-section of a circular QWR of the radius a, loaded with a zero-thickness graphene strip
of the width 2d, is shown in Fig. 1. The wire axis is co-located with the strip middle line and
coincides with the z-axes of Cartesian (x,y,z) and cylindrical (r,ϕ,z) coordinates. The material
of the wire is characterized by the complex refractive index, v = α − iγ. We suppose that the
QWR consists of the gain material, so that α>0, γ>0. The structure is infinite along the z-axis
that allows considering two orthogonal polarizations of the electromagnetic field separately. We
consider the H- polarization case (magnetic field vector is parallel to the z -axis), since the
plasmon modes of the graphene strip are known to be absent in the E -polarization case. The
time dependence exp(−iωt) is assumed and omitted.

The H-polarized field can be conveniently characterized with the aid of the z-component of
magnetic field. This component has to satisfy a two-dimensional (2-D) boundary-value problem
in the laser cross-section for the Helmholtz equation with wavenumber k = ω/c (where c is the
light velocity) out of QWR and k1 = kv inside QWR. This problem has the following set of the
boundary conditions: the resistive-sheet conditions at the graphene strip,

E+y =
1
σ
(H+z −H−

z ), |x|<d, y = 0, (1)

E+y =E−
y , |x|<d, y = 0, (2)

the tangential component continuity conditions at the QWR boundary,

E+y =E−
y , r = a, ϕ ∈ [0, 2π), (3)

H+z =H−
z , ϕ ∈ [0, 2π), (4)

where symbols “±” denote the limit values of the field components above (for “+”) or below (for
“−”) the interfaces, the Sommerfeld radiation condition at the infinity,

∂Hz

∂r
− ikHz = o

(︃
1
√

r

)︃
, r → ∞, (5)
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where r is the distance, and the local power finiteness condition (the edge condition),

∫Ω(|Hz |
2 + |kZ0∇Hz |

2)ds<∞, (6)

where Ω ⊂ R2 is an arbitrary domain and Z0 = 120πΩ is the free-space impedance. In the case
of zero thickness graphene strip, Eq. (6) is equivalent to Hz = O

(︁√
ρ
)︁

and |∇Hz | = O
(︁
1/√ρ

)︁
, if

the distance to the edge ρ→ 0.
These conditions are inherited from the classical real-frequency wave-scattering problems

where they are satisfied by the residues in the real-frequency poles of the scattered field functions.
The formulated above problem has no given sources or incident field. Instead, we assume that

the geometrical parameters and the active region refractive index, α, are given, and look for the
eigenvalue pairs, (f , γ), which generate non-zero functions Hz that satisfy the problem conditions.

3. Casting the eigenvalue problem to determinantal equations

The considered nanolaser configuration has two components. One of them is graphene strip
and the other is QWR of the circular cross-section. To reduce the stated above LEP to
determinantal equation, we introduce the electric current density function on the strip as
w(x) = H+z (x, y) −H−

z (x, y), |x|<d, y= 0. Then, following [30], we present unknown field function
Hz as a double-layer potential, i.e. convolution of the current with the normal derivative of the
circular dielectric rod Green’s function G(r⃗, r⃗1),

Hz(r⃗) = ∫
d
−d wn(x1)

∂G(r⃗, r⃗1)

∂y1
dx1, y1 = 0, (7)

where r⃗ = (x, y) is the radius-vector of the observation point, r⃗1 is the radius-vector of the point
on the strip. Here, the Green’s function complies with the radiation condition (5).

Thanks to linear character of the integral operator, function (7) automatically satisfies the
boundary conditions at the QWR contour and the radiation condition at infinity (5). The dielectric
rod Green’s function has two arguments, r⃗1 and r⃗, which can correspond to the inner and outer
domains of QWR. However, Eq. (7) implies that both r⃗1 and r⃗ are inside QWR. Then the Green’s
function can be represented as a sum of two terms [30],

G(r⃗, r⃗1) =

⎧⎪⎪⎨⎪⎪⎩
G0(r⃗, r⃗1) + G1(r⃗, r⃗1), r<a,

G1(r⃗, r⃗1), r>a,
(8)

where G0 is the Green’s function of the 2-D space filled in with the same material as QWR,

G0(r⃗, r⃗1) =
i
4

H0(k1 |r⃗ − r⃗1 |), (9)

and G1 accounts for the presence of the dielectric rod. Using the separation of variables, the
latter function can be derived in explicit form, as Fourier series in terms of the angular exponents,

G1(r⃗, r⃗1) =⎧⎪⎪⎨⎪⎪⎩
− 1

4
∑︁∞

m=−∞ AmJm(k1r)Jm(k1r1) sin mϕexp( imϕ1), r<a,

− 1
4
∑︁∞

m=−∞ BmHm(kr)Jm(kr1) sin mϕexp( imϕ1), r>a,

(10)

Am = (Hm(ka)H′
m(k1a)/v − H′

m(ka)Hm(k1a))/Cm, (11)
Bm = 2i/(πk1aCmv), (12)

Cm = Jm(k1a)H′
m(ka) − J ′m(k1a)Hm(ka)/v, (13)

where Jm(·) and Hm(·) are the Bessel and Hankel (first kind) functions, and the prime stands for
the differentiation in the argument.
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Now, on using Eq. (2), substituting Eq. (7) into Eq. (1), and taking into account the limit
values of the double-layer potential, we obtain the following boundary integral equation:

4k1vZw(x) + k1 ∫
d
−d

H1(k1 |x−x1 |)
|x−x1 |

w(x1)dx1 + ∫
d
−d

∑︁∞
m=−∞ Cmm2

×sgn(xm−1xm−1
1 )Jm(k1 |x|)Jm(k1 |x1 |)/|xx1 |w(x1)dx1 = 0, |x|<d,

(14)

where Z = (σZ0)
−1 is the surface impedance of graphene, normalized by the free-space impedance,

Z0.
Note that, according to the edge condition, the current density tends to zero at the edges of the

strip,
w(x) ∼

√︁
d2 − x2, x → ±d. (15)

The integrand of the first integral in Eq. (14) contains a second order-singularity and should
be understood in the sense of the Hadamar finite part. Considering Eq. (15), after transforming
the integration interval (−d; d) to a standard one (−1; 1), we rewrite Eq. (14) as follows:

4k1vZw̃(t)
√

1 − t2 − 2i
πd ∫

1
−1

1
|t−t1 |2

w̃(t1)
√︂

1 − t21dt1

+k1i ∫1
−1 ln|t − t1 |w̃(t1)

√︂
1 − t21dt1 + ∫1

−1 F(t, t1)w̃(t1)
√︂

1 − t21dt1 = 0,
(16)

where t = x/d, t1 = x1/d, F(t, t1) is regular function without the singularities for t, t1 ∈ (−1; 1),
w(x) = w̃(t)

√
1 − t2.

Further, we use the Gauss-Chebyshev quadrature rule with the weight
√

1 − t2 for the discretiza-
tion of (16). Here, the zeros of the Chebyshev polynomials of the second kind, tl = cos(πl/N),
l = 1, . . . , N, serve as both interpolation and collocation points, and N is the order of the
discretization scheme. Following the same lines as in [30], we obtain a homogeneous matrix
equation with matrix A(N) of the finite order N,

4k1vZw̃(tl)
√︂

1 − t2l −
2i
πd

∑︁N
j=1 C1,l,jw̃(tj)

+k1i
∑︁N

j=1 C2,l,jw̃(tj) + k1i
∑︁N

j=1 C3,jF(tl, tj)w̃(tj) = 0, l = 1, . . . , N,
(17)

where C1,l,j, C2,l,j, and C3,j are coefficients of the quadrature rule for the hyper-singular integrals,
integrals with logarithmic singularity, and regular integrals. Then, the sought pairs (f , γ) are the
solutions of the determinant equation,

detA(N)(f , γ) = 0. (18)

To solve Eq. (18), we use the gradient-descent method [35], based on the iterative equation

⎛⎜⎝
f j

γj

⎞⎟⎠ = ⎛⎜⎝
f j−1

γj−1
⎞⎟⎠ − ⎛⎜⎝

δf

δ

⎞⎟⎠∇f ,γdetA(N)(f j−1, γj−1), j = 1, 2, 3, . . . , (19)

where δf = δ · 1012 Hz, δ is the step, and j is the iteration’s number. To calculate the gradient
in Eq. (19), we use the finite-difference scheme. However, Eq. (19) represents an iterative
procedure that heavily depends on the initial-guess approximation for the LEP eigenvalue pair,
(f , γ). To determine the initial approximation, we build the color map of |detA(N) | on the (f , γ)
plane. After that, we identify the minima of |detA(N) | on the relief and use them as the initial
approximation for Eq. (19). The criterion to confirming that the located point, following Eq.
(19), is the zero is the change in the sign of both real and imaginary parts of detA(N) upon passing
through that point. As an example, we show such a map in Fig. 2.
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magnetic field depending on the azimuth as cos 𝑚𝜙. In contrast, the EO and OO types contain 
both the strip-perturbed quasi-𝐻―

𝑚𝑗 modes of QWR, depending on azimuth as a series in sin 𝑚𝜙, 
and the plasmon modes 𝑃𝑚 of the strip itself. Consequently, (14) can be split into two separate 
integral equations, which correspond to x-even, 𝑤(𝑥) = 𝑤( ― 𝑥), and x-odd surface current, 
𝑤(𝑥) = ― 𝑤( ― 𝑥), respectively, and studied independently.

Fig. 2. Color map of |det 𝐴(𝑁)| on the (f, 𝛾) plane for the QWR and graphene strip parameters 
as indicated and the integral equation discretization order N=20.

The characteristics of the graphene strip plasmon modes in homogenous medium can be 
estimated analytically, by following the same lines as in [36] (equation (33)) and [33] 
(equations (12) and (13)). Here, a plasmon mode is viewed as the mode of the 1-D Fabry-Perot 
resonator working on the graphene plasmon wave that bounces between the strip edges. The 
complex propagation constant of such wave has analytical description - see Appendix in [36]. 
Then, assuming that the frequency is not extremely high and the graphene conductivity is 
dominated by the intraband (Drude) term and, additionally, neglecting the radiation losses, the 
plasmon mode wavenumbers, 𝑘 = 2𝜋𝑓/𝑐, and thresholds gain indices are obtained as

𝑘𝑝
𝑚 ≈ 1

2𝛼
𝜋(𝑚 ― 0.25)𝛺

𝑐𝑑

1/2
, 𝛾𝑝

𝑚 ≈ 2𝛼2

𝜏
𝑑

𝜋(𝑚 ― 0.25)𝛺𝑐

1/2
, (20)

where

𝛺 = 𝑞2
𝑒𝑘𝐵𝑇𝑍0

𝜋ℏ2
𝜇𝑐

𝑘𝐵𝑇
+ 2 𝑙𝑛 1 + 𝑒𝑥𝑝 ― 𝜇𝑐

𝑘𝐵𝑇
, (21)

qe is the electron charge, kB is the Boltzmann constant, and ℏ is the reduced Planck’s constant.
In [33] and [36], the authors compare the frequency given by (20) with the results of the 

full-wave modeling. They show that although these expressions are approximate, their accuracy 
is good and even better than could be expected. Eqs. (20) can be also taken as initial-guess 
approximations for the LEP eigenvalue pairs in the iterative search algorithm.

Expressions (20) and (21) show that, similar to the graphene nanotube laser case [33], the 
product of the plasmon-mode wavenumber and the threshold gain index (used in the laser 
theories as “gain per wavelength” quantity) does not depend on the mode number (index 𝑚), 
the strip width 2d, and the graphene chemical potential 𝜇𝑐. It is determined by 𝛼 and 𝜏 as 
follows:

Fig. 2. Color map of |detA(N) | on the (f, γ) plane for the QWR and graphene strip parameters
as indicated and the integral equation discretization order N= 20.

As already mentioned, the considered nanolaser consists of two open resonators: QWR and
graphene strip. As a result, its natural modes form two families of different nature. One of them
corresponds to the modes of QWR, which were double degenerate in the absence of strip and
get perturbed or not perturbed by the presence of graphene strip. These modes remain if the
strip vanishes. The other family corresponds to the plasmon modes of the graphene strip – they
remain if QWR vanishes. This co-existence of modes is similar to the nanolaser built on the
noble-metal strip inside the circular QWR, studied in [30]. We denote these modes as H±

mn and
Pm, respectively.

Additionally, the considered nanolaser cross-section is symmetric with respect to the x-axis
and the y-axis. Therefore, similar to the noble-metal counterpart in [30], it can support the
modes of four orthogonal types of symmetry, EE, EO, OE and OO, where E (O) stands for the
even (odd) mode field function of x and y. Here, it is obvious that the presence of the graphene
strip is irrelevant to the modes the EE and OE types because the strip is zero-thickness and
sits in the electric field zero. Hence, these mode types contain only the QWR modes H+mj with
magnetic field depending on the azimuth as cos mϕ. In contrast, the EO and OO types contain
both the strip-perturbed quasi-H−

mj modes of QWR, depending on azimuth as a series in sin mϕ,
and the plasmon modes Pm of the strip itself. Consequently, Eq. (14) can be split into two
separate integral equations, which correspond to x-even, w(x) = w(−x), and x-odd surface current,
w(x) = −w(−x), respectively, and studied independently.

The characteristics of the graphene strip plasmon modes in homogenous medium can be
estimated analytically, by following the same lines as in [36] (Eq. (33)) and [33] (Eqs. (12) and
(13)). Here, a plasmon mode is viewed as the mode of the 1-D Fabry-Perot resonator working
on the graphene plasmon wave that bounces between the strip edges. The complex propagation
constant of such wave has analytical description – see Appendix in [36]. Then, assuming that the
frequency is not extremely high and the graphene conductivity is dominated by the intraband
(Drude) term and, additionally, neglecting the radiation losses, the plasmon mode wavenumbers,
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k = 2πf /c, and thresholds gain indices are obtained as

kp
m ≈

1
2α

[︃
π(m − 0.25)Ω

cd

]︃1/2
, γ

p
m ≈

2α2

τ

[︃
d

π(m − 0.25)Ωc

]︃1/2
, (20)

where

Ω =
q2

ekBTZ0

πℏ2

{︃
µc

kBT
+ 2 ln

[︃
1 + exp

(︃
−
µc

kBT

)︃]︃}︃
, (21)

qe is the electron charge, kB is the Boltzmann constant, and ℏ is the reduced Planck’s constant.
In [33] and [36], the authors compare the frequency given by Eq. (20) with the results of the

full-wave modeling. They show that although these expressions are approximate, their accuracy
is good and even better than could be expected. Equation (20) can be also taken as initial-guess
approximations for the LEP eigenvalue pairs in the iterative search algorithm.

Expressions (20) and (21) show that, similar to the graphene nanotube laser case [33], the
product of the plasmon-mode wavenumber and the threshold gain index (used in the laser theories
as “gain per wavelength” quantity) does not depend on the mode number (index m), the strip
width 2d, and the graphene chemical potential µc. It is determined by α and τ as follows:

kp
m · γ

p
m =

α

cτ
. (22)

Note that in the case of the configuration shown in Fig. 1, the graphene-strip cavity is not in the
homogeneous medium but inside a circular QWR of finite radius, a. Therefore, the agreement
with Eq. (22) is expected to become better if a gets significantly larger than d.

4. Numerical results

Before presenting the results of the numerical analysis of the threshold conditions for the modes
of considered nanolaser, we study the convergence of Eq. (19) with respect to the number of
iterations. All results presented below are obtained for the discretization order N = 20. The
number of terms taken into account in sums in (10) is 20. This is because the verification has
shown that doubling the N leads to changes in the results at the 6-th decimal place. Figure 3
shows dependences of |detA(N) | on the number of iterations for two cases: δ is constant and δ is
adaptively changed. As one can see, the convergence is not monotonic. If δ is constant, starting
from a certain number of iterations, |detA(N) | shows oscillations with not decreasing amplitude.
Therefore, we use the following approach: if |detA(N) | starts increasing, we decrease δ ten-fold –
this guarantees that the determinant keeps going down.

Figures 4, 5, and 6 show the trajectories of the modes, i.e. the LEP eigenvalues, as solutions
of Eq. (16), on the (f , γ) plane under the variation of the chemical potential, in the frequency
range from 0 to 5 THz. The values of the graphene chemical potential vary from 0.1 eV to 1 eV
(which is the largest accessible today value, according to the publications [37,38]) with the step
of ∆µc = 0.1eV. The temperature is T = 300 K and the electron relaxation time is τ = 1 ps.

The results shown in Fig. 4 correspond to the microsize strip, d= 10 µm and relatively thick
QWR, of the large radius a= 70 µm. The strip width 2d here is 7 times smaller than the QWR
diameter. This results in the downshift of the frequencies of the QWR modes, H−

mn, many of
which are found below 5 THz and hence compete with the lower plasmon modes, Pm. With the
parameters considered in Fig. 4, the threshold values of the higher-order plasmon modes, Pm,
m>2, are smaller than the threshold values of the lower H−

mn modes, which have large radiation
losses. The same is true for the first plasmon mode P1, however, only if the chemical potential
is smaller than µc<0.45 eV. This is because around that value the P1 frequency approaches the
frequency of the lowest mode of QWR of the same symmetry, H−

11, and two modes hybridize. As
usual, hybridization leads to the growth of one mode threshold and the drop of the other.
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𝑘𝑝
𝑚 ⋅ 𝛾𝑝

𝑚 =
𝛼
𝑐𝜏  (22)

Note that in the case of the configuration shown in Fig. 1, the graphene-strip cavity is not 
in the homogeneous medium but inside a circular QWR of finite radius, a. Therefore, the 
agreement with (22) is expected to become better if a gets significantly larger than d.

4. Numerical Results
Before presenting the results of the numerical analysis of the threshold conditions for the modes 
of considered nanolaser, we study the convergence of (19) with respect to the number of 
iterations. All results presented below are obtained for the discretization order 𝑁 = 20. This is 
because the verification has shown that doubling the N leads to changes in the results at the 6-
th decimal place. Fig. 3 shows dependences of |det 𝐴(𝑁)| on the number of iterations for two 
cases: 𝛿 is constant and 𝛿 is adaptively changed. As one can see, the convergence is not 
monotonic. If 𝛿 is constant, starting from a certain number of iterations, |det 𝐴(𝑁)| shows 
oscillations with not decreasing amplitude. Therefore, we use the following approach: if |
det 𝐴(𝑁)|starts increasing, we decrease 𝛿 ten-fold – this guarantees that the determinant keeps 
going down.

Fig. 3. Dependences of |det 𝐴(𝑁)| on the number of iterations in (19) for the same set of 
parameters as in Fig. 2. Integral equation discretization order is N=20.

Figs. 4, 5, and 6 show the trajectories of the modes, i.e. the LEP eigenvalues, as solutions 
of (16), on the (𝑓, 𝛾) plane under the variation of the chemical potential, in the frequency range 
from 0 to 5 THz. The values of the graphene chemical potential vary from 0.1 eV to 1 eV 
(which is the largest accessible today value, according to the publications [37, 38]) with the 
step of 𝛥𝜇𝑐 = 0.1eV. The temperature is T = 300 K and the electron relaxation time is  = 1 ps.

The results shown in Fig. 4 correspond to the microsize strip, d = 10 m and relatively thick 
QWR, of the large radius a = 70 m. The strip width 2𝑑 here is 7 times smaller than the QWR 
diameter. This results in the downshift of the frequencies of the QWR modes,𝐻―

𝑚𝑛 , many of 
which are found below 5 THz and hence compete with the lower plasmon modes, 𝑃𝑚. With the 
parameters considered in Fig. 4, the threshold values of the higher-order plasmon modes, 𝑃𝑚, 
𝑚 > 2, are smaller than the threshold values of the lower 𝐻―

𝑚𝑛 modes, which have large 
radiation losses. The same is true for the first plasmon mode 𝑃1, however, only if the chemical 
potential is smaller than 𝜇𝑐 < 0.45 eV. This is because around that value the 𝑃1 frequency 

Fig. 3. Dependences of |detA(N) | on the number of iterations in (19) for the same set of
parameters as in Fig. 2. Integral equation discretization order is N= 20.

approaches the frequency of the lowest mode of QWR of the same symmetry, 𝐻―
11, and two 

modes hybridize. As usual, hybridization leads to the growth of one mode threshold and the 
drop of the other.

Fig. 4. Mode trajectories on the plane (𝑓,𝛾) for varying chemical potential 𝜇𝑐 ∈ [0.1,1] eV with 
the step 𝛥𝜇𝑐 = 0.1eV, and 𝑑 = 10 𝜇𝑚, 𝑎 = 70 𝜇𝑚, 𝛼 = 1.5. Some of the values of the chemical 
potential are indicated near the trajectories. The hyperbolic curve defined by (20) is shown as 
dashed line. Insets demonstrate the near field patterns, in the area 90 m × 90 m, of the QWR 
modes 𝐻―

𝑚𝑗 at 𝜇𝑐 = 0.1 eV (superscript “–” is omitted in Figure). The black circle illustrates the 
boundary of QWR, while a white box corresponds to the strip.

Fig. 5. The same study as in Fig.3, however, for 𝑎 = 20𝜇𝑚.

Fig. 4. Mode trajectories on the plane (f , γ) for varying chemical potential µc ∈ [0.1, 1]
eV with the step ∆µc = 0.1eV, and d = 10 µm, a = 70 µm, α = 1.5. Some of the values
of the chemical potential are indicated near the trajectories. The hyperbolic curve defined
by (20) is shown as dashed line. Insets demonstrate the near field patterns, in the area 90
µm× 90 µm, of the QWR modes H−

mj at µc = 0.1 eV (superscript “–” is omitted in Figure).
The black circle illustrates the boundary of QWR, while a white box corresponds to the strip.
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approaches the frequency of the lowest mode of QWR of the same symmetry, 𝐻―
11, and two 

modes hybridize. As usual, hybridization leads to the growth of one mode threshold and the 
drop of the other.

Fig. 4. Mode trajectories on the plane (𝑓,𝛾) for varying chemical potential 𝜇𝑐 ∈ [0.1,1] eV with 
the step 𝛥𝜇𝑐 = 0.1eV, and 𝑑 = 10 𝜇𝑚, 𝑎 = 70 𝜇𝑚, 𝛼 = 1.5. Some of the values of the chemical 
potential are indicated near the trajectories. The hyperbolic curve defined by (20) is shown as 
dashed line. Insets demonstrate the near field patterns, in the area 90 m × 90 m, of the QWR 
modes 𝐻―

𝑚𝑗 at 𝜇𝑐 = 0.1 eV (superscript “–” is omitted in Figure). The black circle illustrates the 
boundary of QWR, while a white box corresponds to the strip.

Fig. 5. The same study as in Fig.3, however, for 𝑎 = 20𝜇𝑚.Fig. 5. The same study as in Fig. 3, however, for a = 20µm.

For the smaller values of the QWR radius a, the natural frequencies of the QWR modes
Hmj get larger as O(m/a) and hence shift away from the plasmon-mode frequencies, which get
larger as well, however, less rapidly, as O

(︂√︁
m/d

)︂
- see (20). Thus, for a = 20µm (the case of

Figs. 5 and 6), the natural frequency of the H−
11 mode is approximately equal to 6.25 THz for

µc = 0.1 eV. Increasing the width of the strip leads to the downshift of the natural frequencies of
the plasmon modes, as predicted by (20), while increasing the chemical potential leads to their
upshift proportionally to O

(︁√
µc
)︁
.

The hyperbolic curve defined by Eq. (22) is shown in Figs. 4, 5, and 6 as dashed line. As
visible, the LEP eigenvalues follow the trajectories that agree with Eq. (22), however, pass below
that curve. This is understandable because the finite radius of QWR can be understood as the
factor, lowering the effective refractive index, α. Indeed, if a>>d, the agreement with Eq. (22)
becomes better.

To identify the modes, we study their field patterns. Figure 7 shows the magnetic near and far
field portraits of several plasmon and QWR modes. The parameters correspond to Fig. 4, while
µc = 0.1eV that is the value of the chemical potential that is far from the hybridization and all the
modes are easily identifiable.

The near fields of the plasmon modes are concentrated near the surface of the graphene strip and
their amplitudes decrease quickly with the distance from the strip. The fields of the quasi-QWR
modes H−

mn stretch far beyond the QWR boundary that indicates high level of radiation losses.
The numbers of the field variations along the strip width and along the QWR circumference and
radius correspond to the mode indices.

As predicted by Eq. (20), the plasmon modes natural frequencies are well tunable under the
variation of the graphene chemical potential. However, in certain frequency ranges the natural
frequencies of the lowest QWR modes also show stronger dependence on the chemical potential
that is an indication of their hybridization with the plasmon modes. In Fig. 4, this is clearly seen
for the modes P1 and H−

11 around 1.9 THz as well as for the P2 and H−
22 modes around 3.9 THz.

Due to hybridization, the thresholds of the plasmon modes increase, while those of the perturbed
QWR modes drop.
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Fig. 6. The same study as in Fig.5, however, for 𝑑 = 15𝜇𝑚.

For the smaller values of the QWR radius a, the natural frequencies of the QWR modes 
𝐻𝑚𝑗 get larger as 𝑂(𝑚/𝑎) and hence shift away from the plasmon-mode frequencies, which 
get larger as well, however, less rapidly, as 𝑂( 𝑚/𝑑) - see (20). Thus, for 𝑎 = 20𝜇𝑚 (the case 
of Figs. 5 and 6), the natural frequency of the 𝐻―

11 mode is approximately equal to 6.25 THz 
for 𝜇𝑐 = 0.1 eV. Increasing the width of the strip leads to the downshift of the natural 
frequencies of the plasmon modes, as predicted by (20), while increasing the chemical potential 
leads to their upshift proportionally to 𝑂( 𝜇𝑐). 

The hyperbolic curve defined by equation (22) is shown in Figs. 4, 5, and 6 as dashed line. 
As visible, the LEP eigenvalues follow the trajectories that agree with (22), however, pass 
below that curve. This is understandable because the finite radius of QWR can be understood 
as the factor, lowering the effective refractive index, . Indeed, if 𝑎 > > 𝑑, the agreement with 
(22) becomes better.

To identify the modes, we study their field patterns. Fig. 7 shows the magnetic near and far 
field portraits of several plasmon and QWR modes. The parameters correspond to Fig. 4, while 
𝜇𝑐 = 0.1eV that is the value of the chemical potential that is far from the hybridization and all 
the modes are easily identifiable.

The near fields of the plasmon modes are concentrated near the surface of the graphene strip 
and their amplitudes decrease quickly with the distance from the strip. The fields of the quasi-
QWR modes 𝐻―

𝑚𝑛 stretch far beyond the QWR boundary that indicates high level of radiation 
losses. The numbers of the field variations along the strip width and along the QWR 
circumference and radius correspond to the mode indices.

As predicted by (20), the plasmon modes natural frequencies are well tunable under the 
variation of the graphene chemical potential. However, in certain frequency ranges the natural 
frequencies of the lowest QWR modes also show stronger dependence on the chemical potential 
that is an indication of their hybridization with the plasmon modes. In Fig. 4, this is clearly seen 
for the modes 𝑃1 and 𝐻―

11 around 1.9 THz as well as for the 𝑃2 and 𝐻―
22 modes around 3.9 

THz. Due to hybridization, the thresholds of the plasmon modes increase, while those of the 
perturbed QWR modes drop. 

The growth of the thresholds of the 𝑃1 mode is observed also in Figs. 5 and 6, however, 
here it is not connected with hybridization and is not as pronounced as in Fig. 4. The near 

Fig. 6. The same study as in Fig. 5, however, for d = 15µm.

The growth of the thresholds of the P1 mode is observed also in Figs. 5 and 6, however, here it
is not connected with hybridization and is not as pronounced as in Fig. 4. The near magnetic field
patterns of the P1 and H−

11 modes for two values of the chemical potential are presented in Fig. 8.
The maxima of the field absolute value are observed near the graphene strip as well as away

from the strip however inside QWR (compare with Fig. 7). Note that the panels computed for
µc = 1 eV demonstrate that the hybridizing modes have already exchanged their field patterns –
the plasmon mode field looks like the QWR mode field at 0.4 eV and vice versa.

Finally, Fig. 9 shows the trajectories of the plasmon modes on the plane (f , γ) for the nanosize
graphene strip with d = 50 nm inside the relatively thick QWR of the radius a= 1 µm so that
a/d = 20.

For such a narrow strip, the plasmon mode frequencies are upshifted to the range from 10 THz
to 65 THz, and the QWR modes are blue-shifted even further, off the considered frequency range.
The trajectories correspond to the graphene chemical potential variation from 0.1 eV to 1 eV with
the step of ∆µc = 0.1 eV. Similar to the microsize strip, the plasmon mode natural frequencies
exhibit growth with increasing chemical potential. The essential difference is that at small values
of the chemical potential, the thresholds of the higher plasmon modes exceed the thresholds of
the lowest plasmon modes. For example, at µc = 0.1eV we have γp

1<γ
p
2<γ

p
3 . . ..

As mentioned in Introduction, it is interesting to compare the threshold characteristics for
the modes of the laser made of QWR center-loaded with a graphene strip and the same QWR
with a silver strip, considered using LEP in [30]. Inspection of Fig. 9 and Figs. 3 and 4 of [30]
shows that, apart of the different frequency ranges, the threshold values of the gain index are
by order lower in the case of the graphene plasmonic nanolaser. This is apparently explained
by the lower losses in the graphene as material than in silver. In [33], the wire was fully coated
with graphene, so that only one side of the plasmon cavity touched the active region. In contrast,
in our work the strip is embedded into the active material. Thanks to this, with comparable
graphene element sizes, the threshold gain values for the plasmon modes become approximately
twice lower because of the better overlap between the mode electric field and the active region
[25]. This holds true for the case where hybridization with the Hmn-modes does not occur.
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magnetic field patterns of the 𝑃1 and 𝐻―
11 modes for two values of the chemical potential are 

presented in Fig. 8. 

Fig. 7. Near magnetic field patterns of the perturbed QWR modes (a), (b) and plasmon modes 
(c), (d), (e) at 𝜇𝑐 = 0.1eV, 𝑑 = 10𝜇𝑚, 𝑎 = 70𝜇𝑚, 𝛼 = 1.5.

The maxima of the field absolute value are observed near the graphene strip as well as away 
from the strip however inside QWR (compare with Fig. 7). Note that the panels computed for 𝜇𝑐
= 1 eV demonstrate that the hybridizing modes have already exchanged their field patterns – 
the plasmon mode field looks like the QWR mode field at 0.4 eV and vice versa.

Finally, Fig. 9 shows the trajectories of the plasmon modes on the plane (𝑓,𝛾) for the 
nanosize graphene strip with d = 50 nm inside the relatively thick QWR of the radius a = 1 m 
so that a/d = 20. 

Fig. 7. Near magnetic field patterns of the perturbed QWR modes (a), (b) and plasmon
modes (c), (d), (e) at µc = 0.1eV, d = 10µm, a = 70µm, α = 1.5.
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Fig. 8. Comparison of the near magnetic field patterns of the 𝑃1 and 𝐻―
11 modes just below and 

just above the hybridization band of Fig. 4, at 𝜇𝑐 = 0.4eV (a), (c) and 𝜇𝑐 = 1eV (b), (d), 
𝑑 = 10𝜇𝑚, 𝑎 = 70𝜇𝑚, 𝛼 = 1.5. 

For such a narrow strip, the plasmon mode frequencies are upshifted to the range from 10 
THz to 65 THz, and the QWR modes are blue-shifted even further, off the considered frequency 
range. The trajectories correspond to the graphene chemical potential variation from 0.1 eV to 
1 eV with the step of 𝛥𝜇𝑐 = 0.1 eV. Similar to the microsize strip, the plasmon mode natural 
frequencies exhibit growth with increasing chemical potential. The essential difference is that 
at small values of the chemical potential, the thresholds of the higher plasmon modes exceed 
the thresholds of the lowest plasmon modes. For example, at𝜇𝑐 = 0.1eV we have
 𝛾𝑝

1 < 𝛾𝑝
2 < 𝛾𝑝

3... .
As mentioned in Introduction, it is interesting to compare the threshold characteristics for 

the modes of the laser made of QWR center-loaded with a graphene strip and the same QWR 
with a silver strip, considered using LEP in [30]. Inspection of Fig. 9 and Figs. 3 and 4 of [30] 
shows that, apart of the different frequency ranges, the threshold values of the gain index are 
by order lower in the case of the graphene plasmonic nanolaser. This is apparently explained 
by the lower losses in the graphene as material than in silver. In [33], the wire was fully coated 
with graphene, so that only one side of the plasmon cavity touched the active region. In contrast, 
in our work the strip is embedded into the active material. Thanks to this, with comparable 
graphene element sizes, the threshold gain values for the plasmon modes become 
approximately twice lower because of the better overlap between the mode electric field and 
the active region [25]. This holds true for the case where hybridization with the 𝐻𝑚𝑛-modes 
does not occur. 

Fig. 8. Comparison of the near magnetic field patterns of the P1 and H−
11 modes just below

and just above the hybridization band of Fig. 4, at µc = 0.4eV (a), (c) and µc = 1eV (b), (d),
d = 10µm, a = 70µm, α = 1.5.

Single-mode operation is typically preferred for nanolaser applications. For the considered
parameters, the first plasmon mode is the most promising one, and the number of modes can
be regulated by adjusting the pumping power. If the pumping power falls below the threshold
condition of a particular mode, that mode remains dark. Working mode selection can be also
controlled by the choice of the gain material because each material has a specific frequency
envelope of the gain.
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Single-mode operation is typically preferred for nanolaser applications. For the considered 
parameters, the first plasmon mode is the most promising one, and the number of modes can 
be regulated by adjusting the pumping power. If the pumping power falls below the threshold 
condition of a particular mode, that mode remains dark. Working mode selection can be also 
controlled by the choice of the gain material because each material has a specific frequency 
envelope of the gain. 

Fig. 9. Trajectories on the plane(𝑓,𝛾) for the chemical potential varying from 0.1 eV to 1 eV 
with the step 𝛥𝜇𝑐 = 0.1 eV, for 𝑑 = 50𝑛𝑚, 𝑎 = 1𝜇𝑚, 𝛼 = 1.5. The values of the chemical 
potential are indicated. 

5. Conclusions
We have presented the results of the threshold conditions analysis of the plasmonic micro/nano 
laser based on the circular QWR symmetrically loaded with the graphene strip. In this analysis, 
our computational instrument is the full-wave LEP approach, which is tailored to deliver not 
only the mode-specific emission frequencies but also the threshold values of the gain in the 
active region. We have cast the LEP to a hypersingular boundary integral equation for the strip 
current function and discretized it using the Nystrom-type technique – this algorithm has 
mathematically guaranteed convergence and avoids the need for structured grids. Therefore, it 
is reliable and computationally efficient. The real-valued natural frequencies and the 
corresponding threshold gain index values are two-component zeros of the determinant of the 
matrix, obtained after discretization. If desired, our algorithm allows to obtain the results with 
machine precision. 

As we have found, the natural frequencies of the plasmon modes are well tunable by the 
variation of the chemical potential of graphene, so that the mode frequency can double or triple 
when the potential changes from 0.1 eV to 1 eV. If the QWR is relatively thin, i.e. its diameter 
is slightly larger than the strip width, then the lowest plasmon modes have much lower 
frequencies and thresholds than the modes of QWR, perturbed by the strip. However, if QWR 
is relatively thick, i.e. much wider than the strip, then the corresponding natural frequencies 
and thresholds are comparable. In this case, the variation of the graphene chemical potential 
can lead to the hybridization between a plasmon mode and a QWR-mode of the same symmetry 
type. In the case of the nanosize strip of graphene, the thresholds of the lowest plasmon modes 
are by order lower than those of the similar QWR loaded with a silver nanostrip.

Fig. 9. Trajectories on the plane (f , γ) for the chemical potential varying from 0.1 eV to 1 eV
with the step ∆µc = 0.1 eV, for d = 50nm, a = 1µm, α = 1.5. The values of the chemical
potential are indicated.

5. Conclusions

We have presented the results of the threshold conditions analysis of the plasmonic micro/nano
laser based on the circular QWR symmetrically loaded with the graphene strip. In this analysis,
our computational instrument is the full-wave LEP approach, which is tailored to deliver not only
the mode-specific emission frequencies but also the threshold values of the gain in the active
region. We have cast the LEP to a hypersingular boundary integral equation for the strip current
function and discretized it using the Nystrom-type technique – this algorithm has mathematically
guaranteed convergence and avoids the need for structured grids. Therefore, it is reliable and
computationally efficient. The real-valued natural frequencies and the corresponding threshold
gain index values are two-component zeros of the determinant of the matrix, obtained after
discretization. If desired, our algorithm allows to obtain the results with machine precision.

As we have found, the natural frequencies of the plasmon modes are well tunable by the
variation of the chemical potential of graphene, so that the mode frequency can double or triple
when the potential changes from 0.1 eV to 1 eV. If the QWR is relatively thin, i.e. its diameter is
slightly larger than the strip width, then the lowest plasmon modes have much lower frequencies
and thresholds than the modes of QWR, perturbed by the strip. However, if QWR is relatively
thick, i.e. much wider than the strip, then the corresponding natural frequencies and thresholds
are comparable. In this case, the variation of the graphene chemical potential can lead to the
hybridization between a plasmon mode and a QWR-mode of the same symmetry type. In the
case of the nanosize strip of graphene, the thresholds of the lowest plasmon modes are by order
lower than those of the similar QWR loaded with a silver nanostrip.
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