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We study numerically a two-dimensional (2-D) elliptical microcavity laser, in the center of which a circular active
region is located, modeling a focused pumped spot or an injection electrode. The object of the research is to
study lasing spectra, gain-medium thresholds, and modal fields, found as solutions to a classical electromagnetic
eigenvalue problem tailored to address the threshold conditions. The instrument of our study is the set of two
coupled Muller boundary integral equations (BIE) on the boundaries of the cavity and the active region. These

BIEs are discretized by the Nystrom technique that guarantees the convergence. Among the modes that co-exist in
such a resonator, we demonstrate the whispering-gallery-like modes (WGM) and the bow-tie-like modes (BTM).
We find that the threshold values of material gain of BTMs can become lower than those of nearby WGMs if the
radius of the active region in the cavity center is getting sufficiently small.

1. Introduction

Microcavity lasers have been the object of active research since the
1990s. 2-D microlasers appear as reasonable approximations to 3-D
configurations shaped as thin flat “disks” or “patches” thanks to the
effective refractive index concept. Their natural modes were analyzed as
complex-frequency eigenvalue problems for Maxwell’s equations using
a variety of techniques — see reviews [1-5]. Although useful, passive-
cavity models neglect gain and hence cannot characterize the threshold
of lasing.

An important example of the shortcoming of these passive models is
in the description of a phenomenon discovered in the late 1990s when
so-called stadium lasers were proposed [6], providing better directional-
ity than circular-disk ones. Later dye-doped polymer lasers of this shape
were also fabricated and measured [7,8]. In contrast to the common
belief that the lasing always occurs on the highest-Q modes, it was
found that these lasers emitted light on bow-tie-like (BTM-like) modes
instead of whispering-gallery-like modes (WGM-like) ones (perturbed
WGMs) despite the much higher Q-factors of the latter. Although some of
these papers did not mention BTMs explicitly, their presence was always
betrayed by the presence of four similar beams in the far-field angular
emission patterns. This mystery was widely admitted however has not
yet apparently obtained satisfactory explanation although, to address it,
nonlinear theories involving rate equations were developed. One of the

factors preventing such an explanation can be seen as the absence of an
adequate classical electromagnetic model.

In large passive 2-D dielectric cavities, BTMs were studied both via
an approximate billiard-theory approach [1,3,4,6,7] and using more
accurate techniques based on the boundary IEs [9]. Although some of
these IEs contained spurious (purely real) eigenvalues, and were solved
by brute-force numerical algorithms (for details, see [10]), this yielded
important result: BTM-like modes were found in flattened quadrupole,
stadium, and elliptic dielectric micro-cavities. Being quite different from
the viewpoint of the ray-tracing billiard theory, within the full-wave
optics all these shapes can be viewed as smooth perturbations of a
circle by means of the elongation along one of the two symmetry axes.
Then, the theory of the Fredholm operator-valued functions leads to
conclusion that both WGM-like and BTM-like modes exist in either of
these shapes if their difference is small, in certain norm. In particular,
the nature of BTMs was connected to the coupling of the formerly
decoupled modes of the circle with different azimuthal indices that
appeared due to such elongation.

These studies, however, were unable to answer the question of why
the lasing was observed on BTMs instead of WGMs. A remarkable
citation from [3], p. 254 is, “Lasing of bow-tie modes has also posed
a theoretical question: why do the bow-tie modes always lase although
there exist many other 2D patterns of resonance modes than bow-tie
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modes?” Our work presented below is aimed at the explanation of that
phenomenon from the viewpoint of mode thresholds.

In our analysis of the threshold conditions, we use a specific elec-
tromagnetic model adapted to study the lasing of the open resonators
equipped with active regions. It is called the Lasing Eigenvalue Problem
(LEP), the detailed statement of which can be found in [10,11]. This
is the eigenvalue (i.e. source-free) electromagnetic field boundary value
problem specifically tailored to provide both the modal wavelengths and
the associated values of threshold material gain in the active region.
This is because, in contrast to the conventional eigenvalue problem
considering the complex modal frequencies (and associated Q-factors)
for a passive optical cavity, the LEP fully takes into account the size,
shape and location of the active region. As shown in [11], every LEP
eigenvalue automatically satisfies both the “gain = loss” and the “phase
conjugation” conditions, which appear as the real and the imaginary
parts, respectively, of the Poynting theorem applied to the laser mode
field. Therefore the LEP formalism is, in fact, the full-wave classical
(i.e. purely electromagnetic) laser threshold theory equally valid for
any 2-D and 3-D configuration. Here it should be noted that the so-
called “semi-classical theory”, developed at the onset of laser studies
when early laser resonators were measured in thousands of wavelengths,
coincides with the LEP for the 1-D laser models, which involve only flat-
layered infinite-width micro-cavities (see [11]).

To date the LEP approach has been successfully applied to a va-
riety of 2-D stand-alone micro-lasers in the form of an active cir-
cle [11], ellipse [12], limacon [13], and kite [10], active cyclic pho-
tonic molecules [14], active circular disks with passive annular Bragg
reflectors [15], and a partially active circle [16]. More recently the LEP
was applied to the modes of a single plasmonic nanostrip [17] and a
plasmonic nanotube [18] placed into an active circular shell, which can
be viewed as a quantum wire. An infinite array of circular quantum
nanowires was considered with the LEP in [19], where it was shown
that such a periodic open active resonator can support so-called lattice
modes with ultra-low thresholds and wavelengths located near to the
Rayleigh anomalies. A similar LEP-based study of the lasing modes of
an infinite binary grating of circular silver and quantum nanowires was
published in [20] where the thresholds of the localized surface plasmon
(LSP) modes were found to be higher than those of the lattice modes.

Note also that there exist other LEP-like formulations aimed at the
extraction of mode threshold, see [21-23]; some of them differ from
the LEP only by the choice of the material-gain parameter, which can
be regarded as the imaginary part of the dielectric permittivity rather
than the imaginary part of the refractive index, or as the product of the
wavenumber and the imaginary part of the refractive index. In any case
the principal step is the assumption that the threshold value of gain is
unknown and considered as eigenvalue. This is fully adequate to the
fundamental observation, known from the onset of laser research, that
the thresholds of lasing are closely tied to the field patterns of open
cavity modes and their overlap with the active region.

Note that the LEP formalism is especially advantageous in the
analysis of micro-cavity lasers where active regions do not coincide with
the whole cavity, for instance due to the application of a well-focused
optical pump or a shaped carrier-injection electrode.

2. Problem formulation and outline of solution

The object of our study is the electromagnetic field depending on
time as exp(—iwt), where w is the angular frequency, in the presence of
an open dielectric resonator, shown in Fig. 1 and made of non-magnetic
materials. We assume that the active region is the inner domain £,
which contains a gain material with a complex-valued refractive index
v = a — iy, where a > 0 is known and y > 0 is unknown. The outer
domain £, has the same refractive index a > 0 (known value) and
the host medium refractive index is 1 (domain £,). Denote the free-
space wavenumber as k = w/c, where c is the light velocity. A function
U is called the eigenfunction of the LEP generated by the real-valued
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Fig. 1. Geometry of a 2-D elliptic dielectric resonator with a circular active region inside.

eigenpair (k,y) provided that it satisfies the Helmholtz equation in
£, , and host medium with corresponding wavenumbers, the tangential
electromagnetic-field components continuity conditions at the contours
of the active region I'; and the cavity I',, and, thanks to the real k, the
Sommerfeld radiation condition far from the cavity.

As it was noted in [11], the theory of analytic operator-valued
functions allows one to find that, for arbitrary micro-cavity with ar-
bitrary active region, the set of the eigenvalue pairs (k,,y,) is discrete
(s = 1,2,...), the multiplicity of each eigenvalue is finite, they cannot
appear or disappear in the domain of problem’s analyticity, and the
only point of their accumulation is at infinity. In order to find them
numerically, a trusted computational tool should be used. As such a
tool, we use the Muller BIE, which (i) is fully equivalent to the original
boundary-value problem, (ii) has no spurious eigenvalues, and (iii) is
of the Fredholm second kind, i.e. it has smooth and square-integrable
kernels.

Keeping this in mind and following [10], we reduce the LEP to the
eigenvalue problem corresponding to the following operator equation:

I+ B(k,y)W=0, (€D)]

where W is the vector of four functions corresponding to the field
components tangential to two curves I ,, I is the identity operator,
and B is an operator-valued function of k,y involving weakly singular
integral operators (if I' , are at least twice continuously differentiable).
Explicit expressions for all involved quantities can be found in [24].
Then (1) is a generalized spectral problem (in a mathematical sense) for
the Fredholm operator-valued function.

To find the spectrum of eigenvalues, we discretize (1) numerically
using the Nystrom method in the form first proposed in [10]; we use
the improved version that takes account of possible symmetries of the
contours [12,24]. Then the search for the LEP eigenvalues is reduced
to the calculation of the zeros of the determinant generated by the
matrix equation obtained from (1). Further, we take into account that,
according to the matrix algebra (see [25], Theorem 7.3.5), these zeros
coincide with the zeros of the inverse condition number of the same
matrix. As computing the condition number of an arbitrary matrix is
more favorable than finding its determinant, we analyze the former
quantity as a function of parameters.

The search for eigenvalues is done by the iterative method. To
verify the code, we used the lasing frequencies and thresholds of the
modes of uniformly active circular and elliptic micro-cavities from [11]
and [12] as reference data. Note that, unlike some other forms of BIE,
the Muller BIE has no false eigenvalues and the exponential convergence
of the Nystrom method when taking larger orders of discretization
is guaranteed mathematically [10]. Hence the accessible accuracy,
controlled by that order, is limited only by the machine precision. Initial
results of our work were presented in the conference paper [24]; here
we support them with larger numerical data and make better grounded
conclusions.
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Fig. 2. Dependences of the lasing frequencies and threshold gains of the H-polarized
modes of the fully active elliptic cavity on the axes ratio b/a varying between 1 (circle) and
0.5. Solutions for b/a =1, 0.75, 0.6, and 0.5, are marked with circles, squares, rhombuses,
and stars, respectively. The solid lines correspond to the eigenvalues of the x-even modes
while the dashed lines to the eigenvalues of the x-odd modes.

3. Numerical results and discussion

For systematic computations, we have chosen the elliptic cavity with
the axes ratio b/a = 0.5282 and a circular active region of the relative
radius r/a taking values from 0.1585 to 0.4577 and located in the ellipse
center. In computations, we take the cavity refractive index as a = 2.63
that corresponds, for instance, to the effective refractive index of GaAs
layer of thickness 200 nm at the optical-communication wavelength of
1550 nm.

It should be noted that, in an elliptic cavity, there is no obvious way
of assigning the mode indices as exists for a circular cavity. As is known,
the two-index notation (m, n) is commonly used for a circle: the first
index is the azimuthal index, and the second is the radial index; in a
circle, they correspond to the numbers of the mode field variations.
Therefore, we consider an elliptic cavity as a smooth deformation of
the circle and preserve these indices even in the deformed cavity case
where they lose such a simple physical meaning.

It is necessary to stress that in a fully active (flood-pumped) elliptic
cavity BTMs do not dominate over WGMs, in the sense of the threshold
gain values. This is demonstrated by the curves in Fig. 2 that are the
trajectories, on the plane (ka,y), of the LEP eigenvalues for the modes
of active circle (a/b = 1) continuously transforming to the modes of
active ellipse with the axes ratio b/a = 0.5.

The calculations demonstrate that both the x-even and the x-
odd WGM-like modes of the fully active elliptic cavity with indices
(25,1) keep having the field patterns typical of the WGMs, although
distorted by the deformation from circle to ellipse, and remarkably low
thresholds. In contrast, for b/a less or equal to 0.6 the x-even (25, 2)
and the x-odd (25, 3) modes obtain, in elliptic cavity, the field patterns
corresponding to BTMs and nearly two orders higher thresholds (see
Fig. 2).

Turning now to the cavity with partial active region shaped as a
circle in the cavity center, we find that if active region the shrinks in
size, there is little effect on all the mode frequencies (Fig. 3(a)).

The mode thresholds are affected much more strongly: they grow up
and WGM thresholds quickly obtain dramatically high values while the
BTM thresholds change moderately (Fig. 3(b)). As a result, for any pair
of such modes one can find a small enough radius of the active region
in the cavity center that provides a lower threshold of a BTM than that
of a WGM. The explanation of this behavior is quite clear after [11]
(see eq. (37)): the mode threshold gain is inversely proportional to the
product of passive-cavity Q-factor and the overlap coefficient I'*“" < |
between the passive-cavity mode E-field and the active region,

a

= G 2
rmg,

75 + O(ysz), ify, << L.
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Fig. 3. Dependences of the lasing frequencies (a) and the threshold gains (b) of the H-
polarized BTMs and WGMs of elliptic resonator with circular active region on the relative
radius of the latter, r/a.

It is the overlap coefficient that is strongly corrupted for WGM:s if the
pump is applied in a small circle in the ellipse center; however remains
almost intact for BTMs. This leads to the sharp rise in the thresholds of
WGMs and apparently makes the BTMs the first modes to exhibit lasing
in the experiments.

In Fig. 4, we show the near- and far-field patterns of the H-polarized
X-even and X-odd WGMs (25,1), for b/a = 0.5282 and two different
active circle radii: r/a = 0.4577 (large) and 0.1585 (small). The features
of WGMs are clearly observable for both large and small circular active
regions.

Systematic computations have shown that BTM solutions of the LEP
can be found only in the elliptic dielectric cavities with the axes ratio
around or smaller than b/a = 0.6. Keeping in mind that the elliptic cavity
is considered as a smooth deformation of circle, we have found that the
BTM solutions are always obtained as deformations of the modes of a
circular cavity with radial indices n > 1. In contrast, the WGM solutions
are always obtained from the modes of a circle having n = 1.

In Fig. 5, we show the near-field patterns of the H-polarized X-even
(25, 2) BTM and X-odd (25, 3) BTM, for the same two values of the
normalized radius of the active region as in Fig. 4. The characteristic
field patterns of the BTMs are equally well observable for the active
regions of any radius, both large and small. As mentioned above, in
the latter case BTMs can have moderate and even smaller values of
threshold gain than the WGM solutions. In the far zone, BTMs display a
specific “signature” in the form of emission patterns with four symmetric
intensive beams (see [1,6,7]). Still these beams are not clearly the
dominant ones because the computed cavities have moderate size (15
wavelengths in material) in comparison to experimentally measured
ones (over 100 wavelengths).
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Fig. 4. Near fields and far-field emission patterns of WGMs of the X-odd (upper pair) and X-even (lower pair) symmetry classes of the elliptical cavity with a circular active region of
large and small radius (shown by green circle). WGM features are clearly observable. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 5. The same as in Fig. 4 however for BTMs of the X-even (upper pair) and X-odd (lower pair) symmetry classes of the elliptical resonator with a circular active region.

Another common feature is that the deformation from circle to
ellipse leads to the well observable growth of the magnitude of the
field hot spots at the parts of contour where its curvature is the largest,
i.e. near to the apexes of the main axis. The field pattern is quite stable
with respect to variations in the active-region radius. Still the smaller
the radius of the active circle, the higher the thresholds; this means
the appearance of a noticeable gain-induced contrast between active
and passive regions of ellipse. Indeed, the lower panel of Fig. 4 shows
that, in the case of the X-odd mode (25,1), the presence of small-radius
active region leads to appearance of an additional WGM-like pattern in
the active region itself; such a pattern resembles the mode (3,1) of a
circular cavity.

Such hybridization of modes of partial domains with different re-
fractive indices is known in other types of micro-cavities [11,15,18].
Thanks to this effect, the modes of composite cavities are also called
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“supermodes”. Still it is interesting to see that in our case the hybridiza-
tion can take place even if the optical contrast is created only by the
presence of the gain in the pumped region.

To give a broader view of the comparative analysis of WGM and
BTM thresholds of lasing in elliptic micro-cavities with partial active
regions, we present two-color maps of the mentioned above quantity,
1/cond[I + B(ka,y)], as a function of two variables, ka and y. They
correspond to a large (Fig. 6) and a small (Fig. 7) radius of the active
circle in the center of the ellipse. This comparison reveals an amazing
result: in each case, one can see that there exists an almost periodic in
frequency sequence of modes, which have much lower thresholds than
all others. They are WGM-like modes in Fig. 6, for a large active region,
and BTM-like modes in Fig. 7 for a small active region.

The analysis presented above explains, as we believe, the mystery
around the performance of the stadium and similar-shape 2-D lasers:
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Fig. 7. The same as in Fig. 6 but for an elliptic resonator with a narrow circular active
region of r/a = 0.1585, Note that all the lowest-threshold modes located below the dotted
line are BTMs.

despite much higher Q-factors (in a passive cavity) of WGMs, the lasing
(in the active cavity, i.e. under pumping) occurs on the BTMs. As we
have already mentioned, this happens apparently because the modal
overlap with a small active region in the cavity center is much better
with BTMs than with WGMs. Indeed, the micro image of the stadium
laser in Fig. 1 of [6] shows the injection electrode in its center, following
the cavity shape with the ratio 1:2. Such an electrode did not overlap
with the field of any high-Q perturbed WGM however overlapped well
with BTM fields, similar to our analysis.

This explanation could be questioned for the polymer stadium lasers
of [7] where the pumping was done optically and in a flood manner,
so that illumination of the cavity was uniform. However, according
to [26], the reactive ion etching used for shaping the dye-doped polymer
samples resulted in a clearly observable bleaching of the cavity rim. That
bleaching, in fact, re-shaped the active region and one can guess post
factum that such re-shaping was sufficient to spoil the lasing of WGMs.
This is because, in a 100-lambda stadium cavity laser measured in [7],
the fields of high-Q WGMs (with m >> 1) were tightly compressed at
the rim. In contrast, the explained bleaching of the rim did not affect
the BTMs, which overlapped well even with reduced active region.

4. Conclusions

Summarizing, we have for the first time quantified numerically,
using the LEP formulation, the emission frequencies and threshold
values of material gain for the 2-D elliptic micro-cavity laser with
a circular active region. We have used the coupled weakly-singular
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Muller BIEs discretized with the aid of the Nystrom technique that
guarantees the convergence of computations. Our analysis has shown
that the most common modes in elliptic cavities with sufficiently large
eccentricity (and apparently in other similarly elongated cavities such as
stadium and quadrupole geometries) are the WGM-like and the BTM-like
ones, with their corresponding characteristic near-field patterns. For a
uniformly active cavity, WGMs have considerably lower thresholds than
BTMs. However this is not true anymore if the active region in such
a micro-laser (i.e. photo-pumped spot or injection electrode) does not
coincide with the whole cavity but is a circle located at the cavity center.
In such a case, a reduction of the active-region radius raises the threshold
values of gain for WGMs in a dramatic manner, unlike those for BTMs
which thus can become the lowest threshold ones. This apparently
explains the experimental behavior of the stadium-like micro-cavity
lasers and shows that an active region’s shape, size and location offer
an efficient tool with which to engineer the lasing thresholds of various
micro-cavity lasers.

References

[1]
[2]

K.J. Vahala, Optical microcavities, Nature 424 (2003) 839-846.

A.L. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, Trends in
microdisk laser research and linear optical modelling, Opt. Quantum Electron. 39
(2007) 1253-1272.

T. Harayama, S. Shinohara, Two-dimensional microcavity lasers, Laser Photonics
Rev. 5 (2011) 247-281.

L. He, S.K. Ozdemir, L. Yang, Whispering gallery microcavity lasers, Laser Photonics
Rev. 7 (2013) 60-82.

Y.-D. Yang, Y.-Z. Huang, Mode characteristics and directional emission for square
microcavity lasers, J. Phys. D: Appl. Phys. 49 (2016) 253001.

C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nockel, A.D. Stone, J. Faist, D.L.
Sivco, A.Y. Cho, High-power directional emission from microlasers with chaotic
resonators, Science 280 (1998) 1556-1664.

M. Lebental, J. Lauret, J. S. Zyss, C. Schmit, E. Bogomolny, Directional emission of
stadium-shaped microlasers, Phys. Rev. A 75 (2007) 033806.

W. Fanga, H. Cao, Wave interference effect on polymer microstadium laser, Appl.
Phys. Lett. 91 (2007) 041108.

R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, C. Schmit, Circular dielectric
cavity and its deformations, Phys. Rev. A 77 (2008) 013804.

E.I. Smotrova, V. Tsvirkun, I. Gozhyk, C. Lafargue, C. Ulysse, M. Lebental, A.L.
Nosich, Spectra, thresholds, and modal fields of a kite-shaped microcavity laser, J.
Opt. Soc. Amer. B 30 (2013) 1732-1742.

E.I. Smotrova, V.O. Byelobrov, T.M. Benson, J. Ctyroky, R. Sauleau, A.I. Nosich,
Optical theorem helps understand thresholds of lasing in microcavities with active
regions, IEEE J. Quantum Electron. 47 (2011) 20-30.

A.O. Spiridonov, E.M. Karchevskii, A.I. Nosich, Symmetry accounting in the
integral-equation analysis of the lasing eigenvalue problems for two-dimensional
optical microcavities, J. Opt. Soc. Amer. B 34 (2017) 1435-1443.

E.I. Smotrova, A.I. Nosich, Thresholds of lasing and modal patterns of a limacon
cavity analysed with Muller’s integral equations, in: Proc. Int. Conf. Laser and Fiber-
Optics Numerical Modeling, LFNM-11, Kharkiv, 2011, art. no. 083.

E.I. Smotrova, A.L. Nosich, T.M. Benson, P. Sewell, Threshold reduction in a cyclic
photonic molecule laser composed of identical microdisks with whispering-gallery
modes, Opt. Lett. 31 (2006) 921-923.

E.I. Smotrova, T. Benson, P. Sewell, J. Ctyroky, A.I. Nosich, Lasing frequencies
and thresholds of the dipole-type supermodes in an active microdisk concentrically
coupled with a passive microring, J. Opt. Soc. Amer. A 25 (2008) 2884-2892.
A.S. Zolotukhina, A.O. Spiridonov, E.M. Karchevskii, A.I. Nosich, Electromagnetic
analysis of optimal pumping of a microdisk laser with a ring electrode, Appl. Phys.
B 123 (32) (2017).

0.V. Shapoval, K. Kobayashi, A.I. Nosich, Electromagnetic engineering of a single-
mode nanolaser on a metal plasmonic strip placed into a circular quantum wire,
IEEE J. Sel. Top. Quantum Electron. 23 (2017) 1501609.

D.M. Natarov, T.M. Benson, A.I. Nosich, Electromagnetic analysis of the lasing
thresholds of hybrid plasmon modes of a silver tube nanolaser with active core
and active shell, Beilstein J. Nanotechnol. 10 (2019).

V.0. Byelobrov, J. Ctyroky, T.M. Benson, R. Sauleau, A. Altintas, A.I. Nosich, Low-
threshold lasing modes of infinite periodic chain of quantum wires, Opt. Lett. 35
(2010) 3634-3636.

V.O. Byelobrov, T.M. Benson, A.I. Nosich, Binary grating of sub-wavelength silver
and quantum wires as a photonic-plasmonic lasing platform with nanoscale ele-
ments, IEEE J. Sel. Top. Quantum Electron. 18 (2012) 1839-1846.

A. Mock, First principles derivation of microcavity semiconductor laser threshold
condition and its application to fdtd active cavity modeling, J. Opt. Soc. Amer. B
27 (2010) 2262-2272.

S.W. Chang, Confinement factors and modal volumes of micro and nanocavities
invariant to integration regions, IEEE J. Sel. Top. Quantum Electron. 18 (2012)
1771-1780.

D. Gagnon, J. Dumont, J.-L. Deziel, L.J. Dube, Ab initio investigation of lasing
thresholds in photonic molecules, J. Opt. Soc. Amer. B 31 (2014) 1867-1873.

[3]
[4]
[5]

[6]

[71
[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]


http://refhub.elsevier.com/S0030-4018(19)30063-X/sb1
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb2
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb2
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb2
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb2
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb2
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb3
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb3
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb3
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb4
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb4
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb4
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb5
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb5
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb5
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb6
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb6
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb6
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb6
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb6
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb7
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb7
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb7
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb8
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb8
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb8
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb9
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb9
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb9
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb10
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb10
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb10
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb10
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb10
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb11
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb11
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb11
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb11
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb11
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb12
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb12
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb12
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb12
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb12
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb14
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb14
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb14
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb14
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb14
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb15
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb15
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb15
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb15
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb15
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb16
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb16
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb16
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb16
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb16
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb17
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb17
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb17
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb17
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb17
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb18
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb18
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb18
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb18
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb18
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb19
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb19
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb19
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb19
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb19
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb20
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb20
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb20
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb20
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb20
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb21
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb21
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb21
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb21
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb21
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb22
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb22
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb22
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb22
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb22
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb23
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb23
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb23

A.O. Spiridonov, E.M. Karcheyskii, T.M. Benson et al. Optics Communications 439 (2019) 112-117

[24] A.O. Spiridonov, E.M. Karchevskii, Field patterns of whispering-gallery and bow-tie [25] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge,
modes of elliptic microcavity laser with a circular active region, in: Proc. Int. Conf. 2013.
Transp. Opt. Networks, ICTON-2016, Trento, 2016, p. 7550639. [26] M. Lebental, Université Paris-Saclay, France, Private communication.

117


http://refhub.elsevier.com/S0030-4018(19)30063-X/sb25
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb25
http://refhub.elsevier.com/S0030-4018(19)30063-X/sb25

	Why elliptic microcavity lasers emit light on bow-tie-like modes instead of whispering-gallery-like modes
	Introduction
	Problem FORMULATION AND OUTLINE OF SOLUTION
	Numerical RESULTS AND DISCUSSION
	Conclusions
	References


