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Abstract: We study the lasing eigenvalue problem for a generic 
open dielectric resonator with gain material. The gain is introduced 
within the active region via the “active” imaginary part of the 
refractive index. Each eigenvalue is constituted of two positive 
numbers, namely, the lasing wavenumber and the threshold value of 
material gain. This approach yields clear insight into the lasing 
thresholds of individual modes. The Optical Theorem, if applied to 
the lasing-mode field, puts familiar “gain=loss” condition on firm 
footing. It enables us to rigorously introduce the conception of the 
volume of an open resonator and then the effective-mode volume, 
both for the passive cavities and cavities with active regions. 

The semiconductor, polymeric and crystalline microcavity 
lasers are among the most promising sources of waves from 
THz to UV. Their frequencies of lasing are determined mainly 
by the gain material system used and also the shape and size of 
the resonator, which is frequently a disk. Performance of such 
lasers as electron devices critically depends on the proper 
choice of the current-injection electrodes. As the density of 
carriers is the largest near the electrodes, their configuration, in 
fact, determines the location of the active region in the 
resonator, which can be viewed as dielectric cavity. Design and 
optimization of such devices relies heavily on the availability 
of computationally efficient and simultaneously accurate 
electromagnetic models. Here, two points are important. First, 
the typical size of the resonators is in the range of fractions to 
tens of the wavelength that makes the Geometrical Optics 
based modeling tools impractical. Therefore the use of the 
Maxwell equations is mandatory. However, FDTD codes 
popular today fail to characterize the lasing modes directly and 
suffer of a number of deficiencies. Second, account of the 
presence of active region is crucial. In the computations, it is 
necessary to have a simple and practical criterion for validation 
of numerical results. Our initial goal was deriving such a 
criterion from the Maxwell equations however obtained results 
have more general sense.  

Consider a generic 3-D open dielectric resonator shown in 
Fig.1. Here  and  are passive-dielectric and active-
dielectric regions with boundaries  and , respectively, 
and  is the so-called minimum sphere, i.e. a sphere of the 
minimum radius  containing both   and ; note that it 

may and may not contain a free space part, 

dV aV
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minR dV aV

fV , hence the 
whole passive part of the open cavity is p d fV V V .
Importance of the minimum sphere is in the fact that outside of 
it the field is superposition of solely outgoing waves while 
inside it also contains the incoming waves. 
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Fig. 1. Open dielectric resonator with a partial active region. 

Following [1]-[5], we will be interested in the study of self-
excitation threshold conditions of such a resonator. This means 
that we look for eigensolutions of electromagnetic-field 
problem characterized by the real-valued pairs of numbers, 
( , )k . The first of them is normalized frequency /k c and
the second is material gain. They are the eigenvalues that 
generate non-zero time-harmonic modal fields { , } i tE H e
solving, off  and , the homogeneous Maxwell equations 
with piecewise-constant refractive index 

dS aS
 equal to 1 in fV

and out of ,minV d  in  ( ImdV 0d ), and a i
( , 0)a  in  (materials are non-magnetic). On  and 

, the continuity of the tangential components is requested. 
Besides, the field energy must be locally integrable to prevent 
source-like singularities.  

aV dS

aS

Further, a condition at infinity, at , must be added. If 
the domains  and  are finite and  is real-valued, this is 

R
dV aV k
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the Silver-Muller condition of radiation [6]. 
The fundamental properties of the natural modes 

(eigenmodes) can be established for an arbitrary open cavity 
with an arbitrary active region. This is based on the analytical 
regularisation (see [1],[2]), i.e. equivalent reduction of the 
eigenvalue problem to a set of the Fredholm second-kind 
boundary IEs of Muller’s type, and the use of the operator 
extensions of the Fredholm theorems. It is found that the 
eigenvalues form a discrete set on the plane ( , )k , so that they 
can be counted with the aid of some index, say s; each ( , )s sk
has finite multiplicity and depends on  and ,d aS S ,d a  in 
piece-continuous or piece-analytic manner, and this property 
can be lost only if eigenvalues coalesce. Note also that the gain 
per unit length, the traditional quantity in the descriptions of 
the Fabry-Perot cavities, is g k .

A very instructive insight into the properties of natural 
modes can be obtained from the Complex Poynting Theorem 
(CPT) ([6], p. 98). The most general form of such expression, 
for the complex k, is 

* *

* * 1 2 2
0 0

(1/ 2) ( )

( / 2) ( | | | | ) ,

e m

V

V

j E j H dv

i k Z E k Z H dv
                (2) 

where 
*(1/ 2)

S
E H ds                           (3) 

is the total outward flux of the Poynting vector through the 
arbitrary boundary S enclosing a volume V containing all 
scatterers and sources, 0Z  is free-space impedance, 2  and 

 are the relative permittivity and permeability, respectively, 
ej  and mj  are given electric and magnetic currents, 

respectively, and the asterisk means complex conjugation.  
CPT (2) can be also applied to a natural mode number s (in

this case, ). At first, consider a passive open cavity
(i.e., ), having complex eigenfrequency 

0e mj j
0aV sk . On the 

extraction of the real part, we retrieve the formula,  

( ) ( )

Re
Im

s s

s abs s rad s

k W
k W W

,                   (4) 

,    (5) 
min

1 2 2
0 0(1/ 2) ( Re | | Re | | )s sV

W Z E Z Hs dv

min

1 2 2
( ) 0 0(1/ 2) ( Im | | Im | | )abs s s sV

W Z E Z H dv

k

, (6) 

( ) Re / Rerad s s sW ,                      (7) 

where sW ,  and  are the powers stored in, 
absorbed in, and radiated from open cavity, and 

( )abs sW ( )rad sW
Re s  is the 

flux of the mode Poynting vector out of the minimum sphere. 

Either side of (4) is simply twice the quality factor, 2 sQ  and 
can be considered as its rigorous definition. It may take only 
discrete values linked to the mode.  

Now, turn to a resonator with active region shown in Fig. 1 
and apply (2) to the lasing mode field, { , }s sE H , taking into 
account that sources are absent, , and Im 0sk 0aV . The 
result is the fundamental “gain=loss” expression whose 
simplified derivation is met in semi-classical theories [7], 

( ) ( ) ( )rad s abs s gain sW W W                         (8) 

1 2
( ) 0 | ( , , ) |

a
gain s s a s s sV

W Z E R k dv

dv

,            (9) 

1 2
( ) 0 Im Re | ( , , ) |

d
abs s d d s s sV

W Z E R k ,            (10) 

where we use the mark ~ to emphasize that the corresponding 
quantities are built on the eigensolutions and depend on .

Hence, for the s-th mode having the wavenumber sk , the 
power lost for radiation is balanced by the “negative 
absorption” (i.e., modal gain as the power generated in the 
active region), provided that the material gain equals s . So, 
this is the “gain = loss” condition derived in rigorous way. 

However, besides of the real part, CPT expressed as (2) has 
also the imaginary part that leads to  

1 2 2 2
0 02 Im [ Re( ) | | | | ]s s s sV

k Z E Z H dv         (11) 

where the domain V is arbitrary. In the limit of  as a 
circle of large radius, the left-hand part of (11) is zero due to  
the radiation condition, and the same is valid if 

S

minV V
because of the continuity of . Therefore, we obtain that  

min

1 2 2 2
0 0[ Re( ) | | | | ] 0s sV

Z E Z H dv ,               (12) 

which means that the fractions of the power contained in the 
electric and magnetic field of any mode inside the cavity 
volume  equal each other. The same is valid in the whole 
space. Note that this property holds true for any mode in both 
passive and active open cavities, on resonance.  

minV

The laser configurations where the active region does not 
coincide with the whole cavity (i.e.  in Fig. 1) are 
frequently met in practice. For instance, it is realized if one 
uses a sharply focused pump beam in optically pumped laser 
or, alternatively, the pump beam goes through an axicon. 
Besides, combination of separated active and passive regions is 
typical for the cavities with distributed Bragg reflectors and for 
the coupled-microcavity lasers using selective pumping. 
Moreover, this situation is common for all injection lasers, 
which are known as extremely vulnerable to the proper placing 
of electrodes.

0pV

CAOL*2010 International Conference on Advanced Optoelectronics & Lasers, 10-14 September, 2010, Sevastopol, Ukraine 

34



The CPT for lasers sheds important light on the behavior of 
modal thresholds in the cavities with partial active regions. 
Indeed, can introduce the quantity  given by ( ) 1a

s

min

( ) ( )

( ) 2 2 2
0

2
0

/ ,       

( , ) (1/ 2 )( ) | ( , , ) | ,  

( , ) (1/ 2 ) Re( ) | ( , , ) | ,
a

a a
s s s

a
s s s a s s s sV

s s s s s sV

W W

W k Z E R k dv

W k Z E R k dv2

d

  (13) 

where ind V  and 1 in fV , and .min a dV V V Vf

From this definition it is clear that ( )a
s  is the fraction of E-

field power contained in the active region. It is also the overlap
coefficient between the active region and the modal E-field 
(a.k.a. mode confinement factor). This is a strictly discrete 
quantity having values linked to specific modes. 

This enables us to re-write CPT (8) as follows: 

( ) 1[ ( , ) ( , )]a
s a s s s s s sk Q k ,                   (14) 

where now  

( ) ( )/ [ ]s s rad s abs sQ W W W                        (15)  

is the Q-factor of the active cavity. Further investigation of (14) 
assuming that the threshold is small, 1s , shows that the 
first-order approximation to s  is obtained if one takes the 
mode field components and the frequency as for a passive 
cavity ( 0s ),

( ) 1 2[ ( ,0) ] (a )s s s s s sk Q O                     (16) 

Expression (16) tells that in order to achieve low threshold in 
the active (pump on) cavity, it is not enough to have high Q-
factor of the same mode in the passive (pump off) cavity. The 
mode E-field overlap with active region is equally important 
and can dramatically counterbalance the Q-factor – this 
happens, for instance, with the quasi-WG modes in a stadium-
cavity laser if the electrode is placed in the cavity centre. 

If the modal electric field value in (5) or (13) is normalized 
by its maximum, then sW  or sW  is the effective mode volume
for a passive or an active cavity, respectively. Here, in view of 
(12) it is enough to take account of the first term of (5). 

Effective mode volume plays very important role in the 
cavity quantum electrodynamics (QED) [8]. However, in 
cavity QED this quantity appears from heuristic considerations; 
besides, one and the same definition is used for active and 
passive cavities; the integration is usually taken only over pV
but sometimes is extended to a part of space outside the 
dielectrics and even outside of . In contrast, here we have

introduced
minV

sW  in rigorous and unambiguous way based only 

on mathematical manipulations with Maxwell equations, i.e. 
from first principles. 

Note that in the cavity QED it is assumed that the smaller the 
effective mode volume, the lower the threshold of lasing. Our 
formula (14) convincingly shows that from the viewpoint of 
Maxwell equations this is not true. In fact, the role of the 
effective mode volume is just opposite as sW  enters the 
denominator of r.h.p. of (14); however this role is balanced by 
the mode emission loss,  in the numerator - these two 
quantities “breath” together. The real figure-of-merit of the 
mode in active cavity is its Q-factor, 

( )rad sW

sQ , which can be 
approximated by the passive-cavity counterpart, sQ .

Thus, the Optical Theorem for the lasers considered in linear 
formulation has enabled us to propose a rigorous mathematical 
definitions of the open-resonator volume (as a minimum 
sphere), the effective mode volume, and the mode-active-
region overlap coefficient – this, in fact, provides grounding to 
these quantities, widely used in semi-classical laser physics and 
QED as phenomenological ones. 

This work has been partially supported by the European 
Science Foundation via the “Newfocus” network project. 

REFERENCES

[1] A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T. Benson, P. Sewell, 
“Trends in microdisk laser research and linear optical modeling,” 
Opt. Quant. Electronics, 39, no 15, pp. 1993-1995, 2007. 

[2] E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, “Cold-cavity 
thresholds of microdisks with uniform and non-uniform gain: 
quasi-3D modelling with accurate 2D analysis,” IEEE J. Select. 
Topics Quant. Electron., vol. 11, no 5, pp. 1135-1142, 2005. 

[3] V.O. Byelobrov, A.I. Nosich, “Mathematical analysis of the 
lasing eigenvalue problem for the optical modes in a layered 
dielectric cavity with a quantum well and distributed Bragg 
reflectors,” Opt. Quant. Electronics, vol. 39, no 10-11, pp. 927-
937, 2007. 

[4] E.I. Smotrova, J. Ctyroky, T. Benson, P. Sewell, A.I. Nosich, 
"Lasing frequencies and thresholds of the dipole-type 
supermodes in an active microdisk concentrically coupled with a 
passive microring," J. Opt. Soc. America A, vol. 25, no 11, pp. 
2884-2892, 2008. 

[5] E.I. Smotrova, J. Ctyroky, T.M. Benson, P. Sewell, A.I. Nosich, 
"Optical fields of the lowest modes in a uniformly active thin 
sub-wavelength spiral microcavity," Optics Letters, 2009, vol. 34, 
no 24, pp. 3773-3775. 

[6] N. Morita, N. Kumagai, J.R. Mautz, Integral Equation Methods 
for Electromagnetics, Boston, Artech House, 1990. 

[7] A. Yariv, Quantum Electronics, New York, Wiley, 1989. 
[8] H. Yokoyama, K. Ujihara (Eds.), Spontaneous Emission and 

Laser Oscillation in Microcavities, Roca Baton, CRC Publ., 
1995.

CAOL*2010 International Conference on Advanced Optoelectronics & Lasers, 10-14 September, 2010, Sevastopol, Ukraine 

35


