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 Diffraction of plane waves by infinite gratings is a classical research topic in the scattering theory. Using 

the Floquet theorem, one can reduce the infinite grating problem to the one-period problem. A characteristic 

feature of infinite-grating scattering is the drastic transformation of the scattering pattern and reflectance intensity 

if, in the process of changing the frequency or the angle of incidence, one of the Floquet harmonics is “passing 

over horizon.” This phenomenon was first explained by Rayleigh [1] who studied theoretically the “anomalies” 

discovered experimentally by Wood [2]. In the simplest case of the normal incidence, these Rayleigh-Wood 

anomalies are observed if the period of the grating is multiple to the wavelength.  

 In contrast, when solving a problem of diffraction by a finite grating, for example, by a grid of M wires, 

one cannot reduce it to one period and must treat the grid as an M-body scatterer [3]. It is quite interesting to find 

out what is the effect of periodicity on the scattering by finite grids, and how large the number M should be to 

consider the grid as “physically infinite.” As a criterion, one can choose the appearance of sharp lobes in the far-

field scattering pattern in the directions of the Floquet-modes of infinite counterpart; however it is difficult to 

quantify this effect. Still besides of the Rayleigh anomaly, among other Wood anomalies in the infinite-grating 

scattering one can see the resonances on the “grating modes,” whose frequencies are just below the Rayleigh 

frequencies [4]. Therefore in this paper we study the formation of such resonance in the scattering of the H-

polarized plane waves by the large enough finite grids of sub-wavelength dielectric wires. 

 Finite grid of equidistantly located parallel wires 

is shown in Fig. 1. The wires are modeled as infinite 

circular cylinders with the same radius a and relative 

dielectric permittivity  . The distance between adjacent 

cylinders is   and their number is M. The global 

coordinates have the origin at the center of the first 

cylinder. For a 2-D problem, a scalar function U, which 

represents either 
zE  or 

zH  scattered-field component, 

must satisfy the Helmholtz equation, 2( ) ( ) 0k U r

 


, 

where 0k k   and 0k k   inside and outside of each 

cylinder, the total-field tangential components continuity 

conditions, the radiation condition at infinity and the 

condition of the local power finiteness.  

 The solution can be obtained by expanding the 

field function in terms of the azimuth exponents in the local coordinates (Fig. 1), using addition theorems for 

cylindrical functions, and applying the boundary conditions on the surface of all M cylinders. The unknown 

coefficients related to the q-th cylinder include the effect of all interactions between the cylinders [3,5]. They are 

finally reduced to an infinite matrix equation, 0( )I U X U  , where: 
( , )

, 1,...{ }i j

ij i j MU U  , (1) ( )( ,... )M

m mX x x , 

0 0(1) 0( )( .. )M

m mU U U , , 1,...i j M , 0, 1, 2,...m   . This is an M M  block-type Fredholm second kind 

equation, where each block is infinite. Therefore the solution of corresponding counterpart equation with each 

block truncated to finite order N converges when the number N gets greater. Before performing systematic 

calculations, we have done several tests of our code and got a good agreement with numerical data published in 

[6-8]. 

 The most important far-field scattering characteristics are the total scattering cross section (TCS), 

backward or radar scattering cross section (RCS), and absorption scattering cross section (ACS). The 

Fig. 1. Scattering geometry and notations 
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corresponding formulas are  
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 where 

D is the totality of all cylinder inner domains. Note that ACS can be also calculated from the power conservation 

law (a.k.a. optical theorem):  
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In computations, we have considered finite grids of parallel GaAs nanowires (refractive index is 
1/2Re 3.374n   ) with radii about tens of nanometers illuminated by the plane H-polarized wave in the visible 

band. In this case the wavelength is larger than the radius of cylinder. Numerical results are presented in Figs. 2 

to 4. In Figs. 2a and 2b, we show the TCS wavelength dependences for the grids of lossless and lossy sub-

wavelength nanowires, respectively. The radius of each cylinder is 25a  nm and the distance between their 

centers (i.e. period) is 450  nm, while the incident plane wave comes from the broadside direction, 

0 / 2  . Note that TCS and ASC are normalized by the number of wires in the grid, M. 
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Fig. 2. Total scattering cross sections for the different grids of lossless cylinders of GaAs (a), and the same for the 

grid of 1600 lossy cylinders with different imaginary parts of refractive index (b). 
 

One can see that the resonant scattering on the grating mode, i.e. at the wavelength equal to the grid 

period, becomes visible if the number of wires has the order of M = 1000 or larger. As a figure of merit, one can 

use the Q-factor of this resonance. For the grid of 3200 lossless nanowires of GaAs it reaches 100. As follows 

from Fig. 2b, the presence of losses spoils the resonance and kills it completely if '' 1n   or larger. In Figs. 3a 

and 3b, presented are the wavelength dependences of ACS and RCS, respectively, for the grids with 1600 GaAs 

nanowires having complex refractive indices. Here, RCS is normalized by the grid length, ( 1) 2d M a   . 
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Figure 3. The same as in Fig. 2b for the absorption (a) and radar (b) scattering cross sections. 

 Note that As expected, both ASC and RCS increase if the losses are greater. All scattering cross sections 

have their value leaps in the vicinity of the resonance wavelength 450 nm, which corresponds to the distance 

between the grid element centers. 

 In Fig. 4, presented are the far-field scattering patterns for the grids of 1600 nanowires at the resonance 

wavelength, λ = 450.04 nm (Fig. 4a) and at the non-resonant wavelength, λ = 400 nm (Fig. 4b). It has quite 



characteristic shape with very narrow main lobes looking in φ = π/2 (specular reflection lobe) and 3π/2 (shadow 

lobe) directions. Scattering along the grazing directions (φ = 0,π) is also significant because at this wavelength 

the ±1-st Floquet harmonics of the infinite grid “pass over horizon.” In the non-resonant case, the scattering 

pattern has all side lobes smaller however still displays sharp lobes in the mentioned two directions because the 

full grid length is very large, 1600d  . It is interesting that pattern in Fig. 4b has four sharp lobes 

corresponding to the ±1-st Floquet harmonics in the infinite grid, because in this case wavelength (400 nm) is 

smaller than grating period (450 nm).  
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Figure 4. Far-field scattering pattern for 1600 cylinders with radius 25 nm and ρ = 450 nm at the resonance 

wavelength, λ = 450.04 nm – (a), at the non-resonance wavelength, λ = 400 nm – (b) 
 

 Thus, electromagnetic scattering by very large periodically structured grids of sub-wavelength wires 

displays sharp resonances at the wavelength equal to the grid period. This is the resonance on the grid mode. This 

phenomenon can be viewed as the test revealing the periodical structuring of the scattering object provided that 

the number of elements is large enough. As the measure of the resonance is its Q-factor, it is interesting that the 

resonance width for a grid of 3200 GaAs nanowires is about 0.1 nm. One can state that to have Q = 100 for the 

studied resonance, as many as 1600 dielectric elements with refractive index n = 3.374 are needed.  
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