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Abstract
We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the
presence of a circular quantum wire (QW)made of a gain material and wrapped in graphene cover and
a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers
the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain
index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo
formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field
functions. The technique involves the resistive boundary conditions, the separation of variables in the
local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire
plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and
threshold values of the gain index that complement the full-wave computations. For the dimer, we
derive separate determinantal equations for four different classes of symmetry of the lasing supermodes
and solve them numerically. Our investigation of the mode frequencies and thresholds versus the
graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have
lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than
10 μm, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-
tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located
quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes
comparable to the radius. These results open a way for building essentially single-mode plasmonic
nanolasers and their arrays and suggest certain engineering rules for their design.

Keywords: graphene, quantum wire, eigenvalue problem, lasing, plasmon modes

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene is a novel ultra-thin material that has unique elec-
tronic and optical properties [1–3]. Today, the patterned
graphene shapes such as strips, disks and gratings of them are
actively studied in the optical and terahertz wave ranges,
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where they can be useful as components of novel plasmon
waveguides, antennas, sensors and filters [4–8]. This interest
is due to the fact that graphene has very good electron con-
ductance, which can be tuned by a DC bias [1–9], that makes
the mentioned devices tunable as well. A sheet of graphene is
able to support the plasmon guided wave in the infrared and
terahertz ranges [2]. On the patterned graphene, such a wave
forms the natural plasmon modes (standing waves). Recently,
graphene has begun to attract attention as a possible material
for the resonant elements of semiconductor plasmonic nano-
lasers [10, 11] (sometimes, also called spasers; about the
terminology, see discussion in [12]). The high cost of
the relevant technologies calls for the reliable pre-modeling of
the scattering, absorption and emission properties of such
devices. Although most frequently graphene is attached to flat
dielectric substrates, graphene-covered circular nanowires can
be also manufactured; their optical properties have been stu-
died both experimentally [13] and theoretically [14–21].

The goal of our work is to quantify the threshold con-
ditions of the plasmon and other modes of the nanolasers
made of a circular QW covered with graphene and a pair of
such wires (see figure 1) and investigate their dependences on
the QW and graphene parameters. Our instrument is the las-
ing eigenvalue problem (LEP) approach [22], which has been
already applied to several types of microlasers in [23–25] and
silver nanostrip and nanotube plasmonic lasers in [26, 27].
LEP is a full-wave semi-classical electromagnetics eigenvalue
problem, tailored to extract the mode-specific wavelengths,
together with the associated threshold material gain values, of
not attenuating in time emission. Complete mathematical
grounding of LEP can be found in [28].

Note that the laser configuration in figure 1(a) was con-
sidered recently in [21] using essentially a LEP-like approach,

namely, looking for the conditions that turn the imaginary
part of the natural frequency of the plasmon mode to zero.

In our work, we build on the conference papers [29, 30],
which are considerably extended by adding numerical results
and drawing more detailed and grounded conclusions. The
remaining part of this work is structured as follows. In section
2, we formulate the considered eigenvalue problems. Sections
3 and 4 deal with characteristic equations and numerical
results for the single-wire nanolaser, respectively. Sections 5
and 6 deal with the same issues for the dimer-wire nanolaser.
Conclusions are summarized in section 7.

2. LEP statement

As follows from the Poynting theorem, arbitrary passive open
resonator eigenfrequencies can be only complex, with non-zero
imaginary parts that corresponds to finite radiation losses.
Therefore, in order to emit electromagnetic wave, which does
not attenuate in time, an open resonator must contain an active
zone filled in with the gain material. In practice, such ‘quantum’

materials can be various semiconductors, dye-doped polymers,
or crystalline materials doped with ions of erbium or some other
rare-earth elements. All of them are able to demonstrate, under
pumping, the inverse population of electronic levels and the
stimulated emission of light. Within macroscopic electro-
magnetics, these properties are translated to the ‘negative losses’
that is expressed by the corresponding sign of the imaginary part
of the dielectric constant and refractive index.

Consider a single-wire laser, the active zone of which is a
graphene-covered circular QW, as shown in figure 1(a), in the
free space. We denote the radius of QW as a and assign the
indices 1 and 2 to the inner (r<a) and outer (r>a) domains
of QW, respectively.

Figure 1. Cross-sectional geometry of a single (a) and a dimer (b) of identical gain-material circular nanowires with graphene covers and the
notations used.

2

Nanotechnology 33 (2022) 495001 Dariia O Herasymova et al



We will assume that the wire is infinite along the z-axis
and that the electromagnetic field does not depend on z, with
time dependence e ,i tw- where the frequency is real, Re .w w=
Thanks to this, we consider a two-dimensional problem in the
plane of the wire cross section, where we introduce the polar
coordinates, r, .( )j As graphene is known to support the
H-polarized plasmon modes, we consider only this case.
Here, the electric and magnetic fields have components

E EE , , 0r( )= j and HH 0, 0, ,z( )= respectively.
The function H r,z ( )j must satisfy the Helmholtz

equation, k H r, 0z1,2
2( ) ( )jD + = outside the QW boundary

r a ,( )¹ with the wavenumbers k k1 n= and k k,2 = where
k cw= / and the QW material is nonmagnetic, so that its
dielectric constant is connected to the refractive index ν as

.2e n= At the graphene-covered QW boundary, the field
function must satisfy the so-called ‘resistive’ boundary con-
ditions

E E E E ZZ H H r a, 2 , , 1z z
int ext int ext

0
int ext( ) ( )= + = - =j j j j

where Z is the surface impedance of graphene, normalized by
the free-space impedance Z0; it has the following form:
Z Z ,0

1( )s= - with σ being the complex surface conductivity.
Besides, thanks to real k, the field function must satisfy the
Sommerfeld radiation condition at infinity, and, additionally,
the condition of the local field power finiteness. Note also
that E Z ik H r,z

int ,ext
0 1,2

int ,ext( )e= ¶ ¶j / / from the Maxwell
equations.

We consider the complex refractive index of the QW
gain material to be i ,n a g= - where α is known refractive
index and 0g > is unknown threshold gain index. We will
also assume that the material gain is uniformly distributed
throughout the QW and does not depend on the frequency. In
real life, such a QW can be a glass-like material doped with
erbium ions, to provide the gain in the infrared range. In the
sub-THz range, similar properties are found for the andalusite
crystalline material doped with iron.

Within the LEP, we look for such pairs of real numbers
k ,s s( )g that generate non-zero functions E H,s s{ } (s=1, 2, K),
which solve the formulated above boundary-value problem for
the Maxwell equations. That is, we look for the frequencies and
gain-index thresholds of laser modes as eigenvalue pairs. It is
worth to note that the other LEP-like formulations exist, see
[31–35], where the threshold gain is characterized with Im 0e <
instead of g or with the product, g k .g=

In the dimer case, we introduce the global Cartesian and
polar coordinates, with the origins at the midpoint between
QW axes so that r x y r, , ,( ) ( )j= =


where x r cos ,j=

y r sin ,j= and two local coordinate systems with the origins
at the wire axes (figure 1(b)). Then, the associated LEP for-
mulation is similar to single-wire case, with the conditions (1)
imposed at each wire’s boundary, r aj = ( j=1, 2). Important
circumstance is that the dimer-wire configuration has two lines of
symmetry, that is the x and y axes.

Note that, in reality, the gain index of active material
depends on the frequency, usually as a bell-like function
reaching maximum at a certain central frequency, say, ,cw and
decay parameter, dw , which are material specific. To reflect
the frequency dispersion of the gain index, one can introduce

the latter quantity into LEP as a function, g =
exp ,d c

2 2[ ( ) ]g w w w- - and then look for the mode-specific
eigenvalue pairs k , .s s( ¯ )g Still, even without this modification,
LEP enables one to compare various modes by their
thresholds.

3. Graphene’s conductivity description

The most widely adopted today quantum model of the elec-
tron mobility in the graphene monolayer is the Kubo model
[2]. Here, the graphene thickness is considered zero, and its
surface conductivity, T, , ,c( )s w m t depends on the cyclic
frequency ω, chemical potential μc, electron relaxation time τ
and temperature T. This value consists of two contributions,

,intra inters s s= + which are intraband and interband con-
ductivities


q k T

i k T k T1
2 ln 1 exp ,

2

e B c

B

c

B
intra

2

2
⎜ ⎟

⎧
⎨⎩
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⎛
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⎞
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⎤
⎦⎥

⎫
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s
p t w
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+ + -

/





iq i

i4
ln

2

2
. 3e c
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m w t
m w t

=
- +
+ +

-
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Then, the normalized (i.e. dimensionless) surface impe-
dance (or resistivity) of graphene is

Z Z . 40
1

intra inter
1( ) ( ) ( )w s s= +- -

The relative contribution of two terms into (4) depends
on the frequency and chemical potential. This can be under-
stood from the curves in figure 2(a) and the color map in
figure 2(b).

The interband conductivity, in absolute value, is smaller than
the intraband one, which is frequently called the Drude model, in
a wide range from the statics to a certain high frequency [2]. The
upper bound here scales with the chemical potential, due to
the dominance of the term containing the factor k Tc B

1( )m - in the
Kubo formulas. For instance, if 0.5 ps,t = T 300 K= and

0.25 eV,cm = then 0.1inter intra∣ ∣ ∣ ∣s s at the frequencies below
40 THz, while if 0.5 eV,cm = then the same is valid at the
frequencies below 80 THz.

Still, above the mentioned frequency, which lays in the
near infrared or visible light range, the description of gra-
phene should take into account both types of conductivity.
Below, we will use the full expression (4) in the numerical
analysis and the simplified description using only the intra-
band term in the analytical characterization of the plasmon
mode frequencies and thresholds.

4. Characteristic equations for the single-wire
modes

Consider plasmonic nanolaser on single graphene-covered
QW (figure 1(a)). The magnetic field inside and outside the
wire can be expanded as Fourier series in the angular expo-
nents, taking into account the radiation condition at infinity
and condition of local field power finiteness near the center of
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wire

H r
x J kr r a
y H kr r a

m m

,
,
,

cos or sin , 5

z
m

m m
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int ,ext

0 1

⎧
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⎫
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( )
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where xm and ym are unknown coefficients, while J .m ( ) and
H .m ( ) are the Bessel and the Hankel 1-st kind cylindrical
functions, respectively. The orthogonality and completeness
of the set of functions m mcos sin , 0 , 1, 2, ...( ) ( )j =/ on
the circle allow us to apply the conditions (1) in term-by-term
manner.

Thus, the separation of variables leads to splitting of the
modes into independent orthogonal families by the azimuthal
index m, and all modes with m>0 are double degenerate.

After some algebra, independent full-wave transcenden-
tal equations for the modes of each index, m=0, 1, 2K, can
be written as

D k a Z J k a H ka

iZ J k a H ka J k a H ka

, ; , ,
0. 6

m m m

m m m m

( ) ( ) ( )
[ ( ) ( ) ( ) ( )] ( )
g a n

n n n
= ¢ ¢

+ ¢ - ¢ =

Note that if Z 0= or Z ,∣ ∣  ¥ then, respectively, (6)
turns to the characteristic equation for the modes of the cir-
cular cavity with PEC wall or the circular dielectric rod in the
free space.

We emphasize that the complex calculus theorems
guarantee that the roots of (6) are discrete on the plane k, .( )g
Besides, each of them is a continuous function of a, α and Z
and cannot appear or disappear on that plane except at k=0
and infinity.

It is interesting that those roots of (6) that correspond to
the plasmon modes can be determined analytically, at least in
the frequency domain where the intraband conductivity, ,intras
dominates over the interband conductivity, inters (see
section 3).

In this domain, inters can be neglected, and the normal-
ized surface impedance (or resistivity) of graphene takes the
following form:

Z Z i1 , 70 intra
1 1( ) ( ) ( ) ( )w s t w» = - W- -/


q k TZ

k T k T
2 ln 1 exp , 8e B c

B

c

B

2
0

2
⎜ ⎟

⎧
⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

( )
p

m m
W = + + -

whereW does not depend on the frequency, qe is the charge of
the electron, kB is the Boltzmann constant, and  is the
reduced Planck constant. As one can see, ZIm 0.< Thanks to
this, graphene can support the propagation of the plasmon
wave [2]. Note that if k Tc Bm >> then the logarithmic term in
(8) can be neglected.

Now, we can consider the circular graphene shell as a
traveling wave resonator, which supports the transversal
plasmon modes (similarly to silver nanotube plasmon modes
[36]). Then, neglecting the curvature of the shell, and hence
the radiation losses, approximate characteristic equation for
these modes is

g a m m, 1, 2, ..., 9plas ( )= =

where gplas is the propagation constant (eigen-wavenumber)
of the plasmon guided wave on the infinite flat graphene
monolayer placed between two dielectrics, known in the
analytical form from [37]. Namely, if Z 1,∣ ∣ >> then

g ik Z O1 1 . 10plas ( ) ( ) ( )e» + +

On substituting (10) and (7) into (9), a complex-valued
equation is obtained

ika Z k O m m1 , 1 , 1, 2, ..., 11( ) ( ) ( ) ( )e g+ + = =

which can be solved analytically in the same approximation.
Interestingly, the same equation as (11) follows from (6) if
ka 1<< and k a 1∣ ∣n << [21]. The real part of this equation
allows to find approximate expression for the frequencies of
the transversal plasmon modes of the closed graphene shell

k
m

a c1
. 12m

P
2

1 2
⎡
⎣⎢

⎤
⎦⎥( )

( )
a

»
W
+

/

Figure 2. The frequency dependences of the intraband and interband
surface conductivities of the monolayer graphene sheet according to
the Kubo formalism (a) and the ratio of these two values as a
function of the frequency and the chemical potential (b). Electron
relaxation time is 0.5 ps,t = temperature is T 300 K.=
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One can see that in the considered approximation, the
frequencies do not depend of the electron relaxation time and
are proportional to the square-roots of the chemical potential
of graphene (if k Tc Bm >> ) and inverse QW radius. This
opens up the possibility of developing a laser that is con-
tinuously tuned in a fairly wide range of frequencies.

Furthermore, the imaginary part of the same equation
delivers the threshold values of the gain index

a

m c

1

2

1
. 13m

P
2 3 2 1 2

⎛
⎝

⎞
⎠

( ) ( )g
a

a t
»

+
W

/ /

Thus, the lasing thresholds of the plasmon modes are
inversely proportional to the electron relaxation time and the
square roots of the mode azimuth index and the chemical
potential (if k Tc Bm >> ). Besides, they scale as the square root
of the wire radius, although one should keep in mind that (13)
is derived neglecting the radiation losses of the plasmons.

Interestingly, frequently used in the laser physics quan-
tity of the product of (12) and (13), which is the gain per
wavelength, does not depend on the QW radius, graphene
chemical potential and mode index, in the considered
approximation, namely

k
c

k
c

1

2
or Im

Re 1
. 14m

P
m
P

m
P

m
P

2
· · ( ) ( )g

a
a t

e
e
t

»
+

»
+

Therefore, within this approximation, all plasmon modes
under any variations of these parameters stay at the same
hyperbolic trajectory, k C , ,1( ) ·a t g= - which is controlled
only by the electron relaxation time, τ, and wire refractive
index, α. This feature is, obviously, the consequence of the
fact that the simplified Kubo expression for graphene’s sur-
face impedance (7) suggests that both its real and imaginary
parts are proportional to T, ,c( )mW hence their ratio scales
as .wt

5. Full-wave analysis of single-wire laser mode
properties

In this section, we present the results of numerical study of
the LEP eigenpairs for the single-QW graphene-coated laser
using the full-wave equation (6) and full Kubo conductivity
(2)–(4). In figure 3, the lasing frequencies and thresholds are
shown versus the wire radius, which varies from 50 nm to
100 μm, at μc =0.25 eV, τ=0.5 ps and α=1.55. One can
see that the plasmon modes have lower frequencies and
thresholds than the first QW modes H01 and H11 provided that
the QW radius is smaller than 10 μm, while in thicker wires
they become comparable.

The based on the Drude term approximations (12) and
(13) for km

P and
m
Pg are also shown by the dotted curves in

figure 2. Note that they are in very good agreement with full-
wave computations of the roots of (6), performed by the
iterative root-search method, where (12) and (13) are the
initial-guess values. As expected, the agreement worsens at
low frequencies where Z∣ ∣ gets so small that the radiation

losses become comparable to the ohmic losses and at very
high frequencies where the contribution of the interband
conductivity cannot be neglected.

Further, to make clearer the comparison of the lasing
conditions, we plot the trajectories of the modes, considered in
figure 3, on the plane ( f, γ), where f=kc/2π, under the var-
iation of the chemical potential of graphene (figure 4), electron
relaxation time (figure 5), and QW refractive index (figure 6).
Here, we choose the wire radius to be 50 μm,
10 μm and 1 μm and assume that the QW gain material
refractive index and the graphene parameters are as indicated in
figures. We emphasize that these trajectories have been com-
puted from the full-wave transcendental equation (6) and full
Kubo expressions (2)–(4) for several values of the azimuth
index m. For comparison, the trajectories based on
approximations (12) and (13) are also presented as dashed
lines.

Figure 3. Frequencies and thresholds versus the wire radius a for the
plasmon modes P1, P2, P3 and P10 and the wire modes H01 and H11

for the single-wire laser with parameters of graphene μc =0.25 eV,
τ=0.5 ps and α=1.55.
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Figure 4. Trajectories of the plasmon modes Pm and wire modes Hnm

of the single-wire laser with parameters а=50 μm (a), 10 μm (b)
and 1 μm (c), under the variation of the chemical potential of
graphene. Other parameters are as marked.

Figure 5. Trajectories of the plasmon modes Pm and wire
modes Hnm of the single-wire laser with parameters а=50 μm
(a), 10 μm (b) and 1 μm (c), under the variation of the
electron relaxation time. Other parameters are as marked.
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As one can see, only the plasmon-mode frequencies are
well tunable using the graphene chemical potential. Making the
wire thinner than 10 μm shifts QW modes far to the blue side

of spectrum. The larger the τ, the lower the thresholds of all
modes; note that if τ varies from realistic 1 ps to fantastic 10 μs
(see figure 5(a)), then the P1 threshold is almost stable that
points out to the possible radiation loss level. Again, the
approximations of (12) and (13), given by the dashed curves,
are amazingly accurate except of the low-terahertz and higher
than 35 THz frequencies.

6. Full-wave determinantal equations of four
symmetry classes of dimer supermodes

In the dimer case, all eigenmodes are in fact ‘supermodes,’
built on the modes of each individual circular wire and
optically connected in four possible ways dictated by the two-
fold symmetry. Hence, supermodes make quartets instead of
pairs because each mode of a stand-alone circular wire is
doubly degenerate; this degeneracy is lifted when another
circular wire appears. Only the supermodes built of axially
symmetric modes of each wire make doublets. Each family of
supermodes has either the symmetry or the anti-symmetry of
its field with respect to each line of symmetry; they can be
conveniently denoted as ‘x-even, y-even’ (EE), ‘x-even, y-
odd’ (EO), ‘x-odd, у-odd’ (ОО), and ‘x-odd, y-even’ (OE).
The ‘even/odd’ conditions, respectively, can be expressed as

H

x
y

H

y
x H

y x

0 at 0 or 0 at 0; 0

at 0 or 0. 15

z z
z

( )

¶
¶

= =
¶
¶

= = =

= =

To reduce the dimer LEP to characteristic equations, we
follow the works [20, 30] and use the Fourier expansions of
the field function in the local polar coordinates, the addition
theorems for the cylindrical functions, and the conditions
(15). Here, we look for the magnetic field function as

H
H r j j

H r

, 1. , 1, 2,

, 2,
, 16z

z
j

j

z
ext

j

int⎧
⎨⎩

( )
( )

=
Î # =

Î #

It is convenient to introduce new variables 2.j jy f p= + /

Then the internal and external fields, which have the y-even and
y-odd symmetry can be expanded as follows:

H r y J k r S j, , 1, 2, 17j

n
n

j
n j n j

int

0

( ) ( ) ( ) ( )( ) ( )åy a y= =
=

¥
+

H r z H kr S, , 18
j n

n
j

n j n j
ext

1,2 0

( ) ( ) ( ) ( )( )å åy y=
= =

¥


where we use the following notations: S mcosm ( )y y=+ and
S msin ,m ( )y y=- Jn (·) and Hn (·) are the Bessel and Hankel
(first kind) functions, and yn

1,2( ) and zn
1,2( ) are unknown coeffi-

cients to be found. This representation of the function H satisfies
the Helmholtz equation, the Sommerfeld radiation condition, the
local power finiteness condition, and the y-even/y-odd sym-
metry conditions that is (15) at x 0.=

On substituting (17) and (18) into the graphene boundary
conditions (1), using the Graph addition theorem for the

Figure 6. Trajectories of plasmon modes Pm and wire modes Hnm of
the single-wire laser with radii а=50 μm (a), 10 μm (b) and 1 μm
(c), under the variation of the refractive index of QW. Other
parameters are as marked.
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Hankel functions, and introducing the notations,

I A A, , 19mn m n
E O E O

mn
E O E O

m n, 0 1
, ,

, 0 1{ } { } ( )( )
( ) ( )

( )d= ==
¥

=
¥/ /

X x , 20E E O
n n1,2

0, 1,2
0 1{ } ( )( ) ( )

( )= =
¥/

x z w w n ka, 2 21n n n n
n1,2 1,2 1 !( ) ( )( ) ( )= =- /

where mnd is the Kronecker symbol, we exclude the unknowns

X pq
2
( ) because from (15) it follows that

X X X X, 22E O E E O E E O O E O O
1

,
2

,
1

,
2

, ( )=  =/ / / /

and obtain the following four matrix equations for X :pq
1
( )

x-even/y-even (EE) and x-odd/y-even (OE) mode classes

I A X 0, 23E O E E O E,
1

,( ) ( )+ =/ /

Figure 7. The near magnetic field patterns of four supermodes P1 of the EE (a), OE (b), EO (c), and OO (d) symmetry classes. The threshold
values of the frequency of emission and the gain index are marked below each picture.
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A V w D

H kL i H kL i , 24
mn
E O E

n m m m

n m
m n

n m
m n

, 1 1

[ ( ) ( ) ] ( )
m= 

´ +

- -

-
-

+
- +

/

and x-even/y-odd (EO) and x-odd/y-odd (OO) mode classes

I A X 0, 25E O O E O O,
1

,( ) ( )+ =/ /

A V w D

H kL i H kL i1 , 26
mn
E O O

m m m

n m
m n m

n m
m n

, 1 1

[ ( ) ( ) ( ) ] ( )
=

´ - -

- -

-
-

+
+

/ 

where Dm is given by (6), 1 2, 1n0 0m m= =>/ and

V J ka J k a
iZ J ka J k a J ka J k a . 27

m m m

m m m m

( ) ( )
[ ( ) ( ) ( ) ( )] ( )

n
n n n

= ¢ ¢
- ¢ - ¢

The large-index asymptotics of the cylindrical functions
allow to establish that each of equations (23) and (25) is a
Fredholm second kind matrix equation in the space of
sequences l l .2 2Ä Thanks to this, their infinite-dimension
determinants exist as functions of all parameters of the pro-
blem. Besides, thanks to the Fredholm theorems generalized
for the operators [38], the characteristic numbers of (23) and
(25) are discrete on the plane k,( )g and depend continuously
on the geometrical and material parameters of the problem.
Moreover, this guarantees that the approximate characteristic
numbers, found from the truncated determinantal equations,

A k p q E ODet , 0, , , , , 28mn mn
p q

m n
N,

, 0 1{ ( )} ( )( )
( )d g- = ==

converge to the exact values for proressively larger truncation
numbers N [39]. Note that the matrix elements need no
numerical integrations, and hence can be easily computed
with machine precision. It should be emphasized that the
scaling of the unknowns with the aid of the weight wn (21) is
crucially important. Without this scaling, the matrix elements
would decay with n  ¥ however grow up exponentially
with m  ¥ that prohibits, mathematically, the truncation of
the matrix.

7. Dimer-wire laser mode properties

In this section, we present the full-wave numerical data on the
lasing frequencies and thresholds of the supermodes of the
dimer laser built of two identical graphene-covered QWs.

To illustrate the splitting of the dimer plasmon modes
into quartets, we present in figure 7 the near magnetic field
patterns of four supermodes P1 of the EE, OE, EO and OO
symmetry classes. Note that the symmetry (antisymmetry) of
the H-field entails antisymmetry (symmetry) of the E-field
pattern.

In figure 8, we show the trajectories of the dimer plasmon
supermode quartets on the plane ( f, γ), under the variation of
the chemical potential of graphene. Here, two supermode
quartets are present, built on the plasmon modes P1 and P2 in
each wire, for two values of the inter-wire separation, 100 nm
for panel (a) and 1 μm for panel (b). Although being split
here, supermode trajectories, in general, are still close to the
hyperbola defined by equation (14). Only the ‘dipole’
supermodes P p q

1
,( ) display deviations, which become smaller

if the separation gets larger.

Finally, in figure 9 we present the mode trajectories of
three supermode quartets, P ,p q

1,2,3
,( ) under the variation of the

inter-wire separation distance from 10 nm to 1 μm, for two
values of the chemical potential, 0.2 eV for panel (a) and 0.5
eV for panel (b). As expected, if the wires move away from
each other, then all four modes of a quartet migrate to the same
‘destination point,’ which is the single-wire mode frequency
and threshold (marked with stars). The largest splits and the
slowest pace of reaching the limit are again associated with the
‘dipole’ supermodes, P .p q

1
,( ) This can be explained by the fact

that the compression of the plasmon-mode fields to the gra-
phene shell increases with the mode index, m, therefore the
distance needed for efficient coupling gets smaller. Note that,
in all examples, the supermodes built on the wire modes, H01

and H11, are off the studied range of frequencies, from the
blue side.

Figure 8. Trajectories of the plasmon supermodes Pm of the dimer-
wire laser with parameters а=1 μm and separation distances
s=100 nm (a) and 1 μm (b), under the variation of the chemical
potential of graphene. Other parameters are as marked.
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8. Conclusions

We have presented the computational electromagnetic ana-
lysis of the plasmonic graphene nanolasers based on the cir-
cular QW wrapped in graphene and a dimer of such wires.
Using the Kubo formalism and separation of variables,
adapted to the LEP approach, we have derived full-wave
transcendental and determinantal equations for the transversal
mode emission frequencies and the material gain thresholds in
the single wire and dimer cases, respectively. These equations
are easily coded in straightforward manner and computed
with machine precision, making the use of commercial codes
unnecessary.

Besides, for a single-wire laser we have derived
approximate analytical expressions for the plasmon-mode

frequencies and thresholds, neglecting the radiation losses and
only using the Drude term (i.e. the intraband component) in
the description of graphene’s surface conductivity. These
expressions are in excellent agreement with full-wave com-
putations in very wide range of the wire radii and frequencies.
As new result, we have found that the product of the plasmon-
mode frequencies and thresholds is close to a constant,
defined by the QW refractive index and electron relaxation
time, only.

If the QW radius is smaller than 10 μm, then the
plasmon modes or supermodes have lower frequencies and
thresholds than the ‘parasitic’ QW modes however in
thicker wires they can be similar. As expected, only the
plasmon-mode characteristics can be well controlled with
the aid of the graphene chemical potential. In the dimer, the
plasmon supermodes form tight quartets, approaching the
single-wire mode characteristics if the inter-wire separation
becomes comparable to the radius. Whatever the separa-
tion, the EE supermode, featuring the x-even and y-even
H-field, shows the threshold, lower than of the same mode
in a single graphene-covered QW. This can be explained by
the fact that this supermode has zero E field at the x and y
axes. We believe that these results bring a clearer vision of
how to build single-mode graphene-covered plasmonic
nanolasers and their arrays.
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