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( )ABSTRACT: Two-dimensional 2-D scattering of wa�es by a conduct-
ing strip with a canonical profile is simulated in the E-polarization case.

( )This analysis is performed by reducing a singular integral equation IE
to the dual-series equations, and making their analytical regularization.

( )Furthermore, the incident field is taken as a complex source point CSP
beam. This is an extension of our pre�ious studies about circular and
parabolic reflector antennas. The algorithm features are demonstrated.
Far-field characteristics are presented for quite large-size cur�es strips of
elliptic, parabolic, and hyperbolic profiles. � 2001 John Wiley & Sons,
Inc. Microwave Opt Technol Lett 31: 480�484, 2001.
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1. INTRODUCTION

The scattering of waves from a 2-D curves strip with a zero
thickness is one of the traditional boundary-value problems
in diffraction theory. The perfectly electrical conducting
Ž .PEC case is the simplest type of this problem. An explicit
solution to this problem is not possible, even for a PEC
circular strip. However, analytical expressions can be ob-

Ž .tained by using the asymptotic high-frequency approxima-
� �tions 1 . Another way is to obtain a numerical solution. For

this purpose, one of the versions of the method of moments
Ž .MoM can be used. In MoM, an electric-field integral equa-

Ž .tion EFIE , which is obtained from the boundary condition,
is discretized by approximating the unknown surface current
density with a set of basis functions. Finally, the problem is

converted to an algebraic matrix equation, and solved numer-
ically. In this way, small and medium-size scatterers can be

Ž . � �solved with a practical a few digits accuracy 2 . However,
for larger geometries or better accuracy, the conventional
MoM meets some intrinsic problems. This is because its
convergence is not guaranteed in the mathematical sense, as

� �an opportunity of minimization of computational errors 3 .
Microwave reflectors are normally of several dozens of

wavelengths in size. Therefore, an accurate and reliable nu-
merical analysis of these scatterers should be done by using

Ž . � �the method of analytical regularization MAR 4 . In the 2-D
PEC strip analysis, this method is based on the inversion of
the singular, namely, the static, part of the EFIE, with some
special function-theoretic technique like the Riemann�Hil-

Ž . � �bert problem RHP 5, 6 . However the remaining part still
exists, and cannot be analytically evaluated, which leads to an
algebraic matrix equation. Therefore, this kind of technique
is also called a semi-inversion method. As the resulting
matrix equation has Fredholm second-kind properties, it can
be solved numerically in an efficient manner, with a guaran-
tee of the accuracy and convergence of the solution.

By using the strip scattering, 2-D models of reflector
antennas can be analyzed, which has great practical impor-
tance, especially in modern communication systems. Reflec-
tor antennas are one of the best ways to communicate from
one point to another with a minimum loss. Here, the most
common method to feed a reflector is to illuminate it with a
tapered beam radiated by a horn feed. We will simulate the

� �feed by the CSP method 7 . This convenient tool was first
� �applied in 8 to analyze a 2-D parabolic reflector antenna in

combination with high-frequency techniques. Nevertheless,
the latter are only valid for electrically very large structures,
and furthermore, it is not possible to obtain a full pattern

� �using a single method. Therefore, in 9 , we have studied a
2-D circular PEC reflector antenna by combining CSP with
MAR�RHP in one accurate technique.

However, when a reflector antenna is considered, the most
realistic reflector profile is certainly a parabolic-shape sur-

� �face. In 10 , such a reflector was solved by following the idea
� �first expressed in 11 #by using the MAR in the form of a

modified RHP technique. Here, one of the basic steps is to
introduce an auxiliary circle that is smoothly joined with a
parabola, and exploit the semi-inversion of the wave scatter-
ing from a circularly curved strip, done by the RHP method.

� �This approach has much in common with that of 12, 13 ,
where semi-inversion was based on the extraction of the
static part only, and on the usage of the Abel integral
equation theory. Besides guaranteed convergence, electrically
large scatterers are easily computed with the MAR due to
the efficient computation of the Fourier series coefficients of
nonsingular kernels by using the double fast Fourier trans-

Ž . � �form DFFT algorithm. In this paper, the formulation of 10
is generalized for all so-called ‘‘conical-section’’ contours,
which are the curves obtained as the sections of a cone by
arbitrary plane: ellipse, parabola, and hyperbola. All of these
curves can be represented by the same equation with differ-
ent eccentricity factors e. We keep in mind that such a
common formulation will be very useful in the solution of
dual-reflector antenna systems.

2. FORMULATION

Cross sections of two problem geometries of infinitely thin
PEC curved screens symmetrically illuminated by a directive
feed are shown in Figures 1 and 2. The first one, as shown in
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Figure 1 Geometry of the reflector antenna system with elliptic
surface

Figure 1, is a 2-D contour with an elliptic-arc profile with the
feed in a geometrical focus of the ellipse. The origin of the
used coordinate system is taken just in this focus, and the
point O represents the symmetry center of the ellipse.e
Further, the focal distance f is taken as a fixed value, i.e.,
a � c � f , while the curvature is assumed to increase frome
that of a circle to infinity. The second geometry, shown in
Figure 2, is similar to the first one, but has a hyperbolic-arc
strip profile, and the feed is in a geometrical focus of hyper-
bola. In this case, the symmetry point O appears to the lefth
of the strip. The focus f of the hyperbola is assumed to be a
fixed value f as given by c � a � f. Both of these curves canh
be represented by the same equation, namely,

2 Ž 2 . 2 Ž . 2 Ž 2 . Ž .y � 1 � e x � 2 fe 1 � e x � f 1 � e 1

where e � c�a is the eccentricity factor of the curve, ande, h
Ž . Ž . Ž .defines a circle e � 0 , ellipse 0 � e � 1 , parabola e � 1 ,

Ž .or hyperbola 1 � e � � . For the ellipse, the semiaxes in the
Ž .x- and y-directions can be expressed as a � f� 1 � e and

Ž . Ž .'b � f 1 � e � 1 � e , respectively. When building the so-
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Figure 2 Geometry of the reflector antenna system with hyperbolic
surface

Žlution, an open arc of this generalized curve representing the
.scatterer cross section is completed to the closed contour C

by a circle having its origin on the x-axis. Its radius is chosen
Žin such a way that, at the connection points i.e., the arc’s

. Ž .endpoints E r , � , the curvatures of the arc and the circlee e
Ž .are matched taken the same . As a result, the contour first

derivatives are continuous, and discontinuities in the second
derivatives are finite. As we will see, this twice-continuous

Ž .closed contour C MUS is smooth enough to develop a
regularized solution to the formulated problem. Another
condition for the solvability of the problem is that the branch
cut associated with the CSP in the real space must not cross

Ž � �.the strip contour M see 9 .
The requirements for the rigorous formulation of the

considered boundary-value problem can be stated as the
satisfaction of the Helmholtz equation, Sommerfeld radiation
condition in the far zone, the PEC boundary condition on the
reflector cross-section contour M, and the edge condition at
its endpoints. As known, the free-space Green’s function in

� �E Ž1.Ž � Ž . Ž . �.2-D, i.e., G � i�4H k r 
 � r � 
� , satisfies both the0 0 0
Helmholtz equation and the radiation condition. Then the
basic EFIE can be obtained by applying the Dirichlet-type
boundary condition, valid in the E-polarization case, to a
single-layer potential representation of the scattered-field
function, with the Green’s function as a kernel:

� � � � �E incŽ . Ž . Ž . Ž .J r � G r , r � dl�� �E r , r � M . 2H z 0 z
M

�incŽ .Here, E r is the known incident-field function, andz
�Ž .J r is an unknown surface-current density function. Assumez

that the closed smooth surface C can be characterized by
Ž . Ž .parametric equations x � x & , y � y & , 0 � &� 2� . De-

fine the current density function to be 0 on the part of C
Ž .complementary to M. Then 2 becomes

2� E incŽ . Ž . Ž . Ž . Ž .J &� G & , &� " &� d&�� �E & , s � M 3H z 0 z
0

Ž .where " &� stands for Jacobian. A further idea is to use the
Ž .entire-period in & radial exponents as a set of global basis

EŽ .functions. Then, the Green’s function G &, &� is to be0
expanded in terms of the double Fourier series. However,
this is not enough to regularize our problem, so a new
function is introduced as follows:

� �Ž1.Ž . Ž � Ž . Ž . �.H & , &� � H k r & � r � &�0 0

� �&� &�
Ž1.� H 2k a sin0 0 sž /2

�
in& im& � Ž .� h e e 4Ý nm

m , n���

where a represents the auxiliary circle radius.s
Ž .In this way, the singularity of H &, &� is extracted from

the kernel; however, the central point of an efficient semi-in-
version technique is that, to ensure the smooth junction of
the open arc M with the auxiliary circle, the latter radius is

Ž .taken equal to f. Then the function H &, &� and its first
derivatives with respect to & and &� are continuous functions

Ž .on C. Furthermore, the second derivative of H &, &� , i.e.,
2 Ž .� H &, &� ��&�&�, has only a logarithmic singularity as &

Ž .� &�� & . Hence, it is not continuous, but belongs to L C ,e 2
and therefore the Fourier series coefficients h satisfy thenm
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following inequality:

�
2 2 2Ž � � .Ž � � . � � Ž .n � 1 m � 1 h � �. 5Ý nm

m , n���

Ž .To discretize IE 3 , all of the other functions are also
expressed in terms of their Fourier series, assuming that this
is justified:

�2
E in& �Ž . Ž . Ž .J &� " &� � x e 6Ýz ni� n���

and

�
inc E in&Ž . Ž .E & � b e . 7Ýz n

n���

In the case of the CSR illumination, the right-hand-part
coefficients are

i 2� � �E Ž1. � in&Ž � Ž . �. Ž .b � H k r & � r e d� 8Hn 0 s8� 0

and the complex source position is given as

� Ž . Ž .r � i b cos 	a � b sin 	a . 9ˆ ˆs x y

Here, parameters b and 	 are the beam width and
beam-aiming angle of the directive horn source simulated

� �with the aid of CSP 7�9 . Then, all of the Fourier expansions
Ž .are substituted into 3 and, with the absence of the current

on the aperture part of C, together constitute the following
dual-series equations:

� �
E Ž1. E in&Ž . Ž .x J k a H k a � h x eÝ Ýn n 0 s n 0 s � ln lž /

n��� l���

�
E in& Ž .� � b e , &� M 10Ý n

n���

�
E in& Ž .x e � 0, &� S. 11Ý n

n���

Ž . Ž .To convert 10 and 11 into a certain convenient form,
we denote a new set of unknown coefficients:

�
E Ž1. E EŽ . Ž . Ž .y � x J k a H k a � h x � b 12Ýn n n 0 s n 0 s � ln l n

l���

and then obtain

�
in& Ž .y e � 0, &� M 13Ý n

n���

� �
in& i n&� � Ž .y n e � f e , &� S 14Ý Ýn n

n��� n���

where

�
E Eb � x hÝn l � lni l��� Ž .f � y � � 15n n n Ž1.Ž . Ž .� J k a H k an 0 s n 0 s

and

i 1
� � Ž .� � � n . 16n Ž1.Ž . Ž .� J k a H k an 0 n 0

The given canonical-form dual-series equations can be
converted to an infinite algebraic matrix equation of the
Fredholm second kind by the application of the RHP tech-

� �nique in the form given in 5, 6 . That is due to the following
Ž . Ž .analytical solution to 13 , 14 , provided that f , n � 0,n

�1, . . . are known

�

˜ Ž .y � f T 17Ým n mn
n���

˜ m�nŽ . Ž .where T � �1 T �cos � , and T functions canmn mn e mn
� �be found in 5, 6, 9 as combinations of the Legendre polyno-

mials. Finally, after substitution of y in terms of x whereˆn n
Ž � � .x � x � n � 1 , the resultant matrix equation becomesˆn n

1 2 3 Ž .I � A � A � A x � B 18ˆml ml ml l m

where

1 Ž � � . Ž .A � h l � 1 �Q 19ml � lm m

2 Ž1. ˜Ž . Ž .Ž � � . Ž .A � J k a H k a l � 1 � T �Q 20ml l o s l o s l ml m

3 Ž � � . Ž .A � l � 1 G �Q 21ml lm m

�
E E˜Ž � � . Ž .B � n b T � b �Q 22Ým n mn m m

n���

�
Ž1. ˜Ž � � . Ž . Ž .Q � m � 1 J k a H k a , G � h T .Ým m 0 s m 0 s lm � ln m n

n��

Ž .23

3. NUMERICAL RESULTS

The performed formulation is examined by the various nu-
merical results related to the beam-forming characteristics of
several reflectors. To do this, the ‘‘conical-section’’ reflector
surface is modeled by the eccentricity factor e. The expansion

Ž .coefficients for the right-hand-part 7 and the smooth kernel
Ž .4 were computed by using the FFT and DFFT algorithms,
respectively. Figure 3 presents the total tangential electric
field and induced surface current density, both on the metal
and aperture part of the closed contour C, as a function of
the arc length. It is understood from these plots that the
required boundary conditions are satisfied. Figure 4 gives the

Ž � � .truncation error see 9 for the definition of this quantity
versus truncation number N in logarithmic scale for differ-t r

Ž .ent eccentricity values e and a fixed aperture dimension d .
It is seen that the N required for reasonable accuracyt r
increases with the e-factor. This is because the radius of the
auxiliary circle smoothly completing arc M to the closed
contour C increases by increasing the e-factor, although the
aperture dimension of M remains the same. Besides, some
radiation pattern samples for the different e-values are pre-
sented in Figure 5 for fixed values of d and the source
directivity parameter kb. Naturally, the narrowest beamwidth
is obtained in the parabolic case, i.e., e � 1, and the lowest
backlobe levels occurs for e � 0.5. This is due to the fact that
the edge illumination is reduced by decreasing the e-factor
under the same d-value. Figure 6 shows the directivity versus
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the e-factor variation for the considered generalized reflector
antenna. It is again seen that the maximum directivity is
obtained in the parabolic case, i.e., at e � 1. Finally, Figure 7

Ž .is a test of the physical-optics PO solution confronted with
our accurate results performed for quite a large-size geome-
try. From the figure, it is observed that the presented and PO
solutions coincide in the main beam, first sidelobes, and
penumbra regions.

4. CONCLUSION

In the 2-D curved strip scattering simulations, arbitrary pro-
file cylindrical PEC surfaces have been solved by the RHP-
based regularization technique in the E-polarization case.
The DFFT algorithm has been used in the computation of
the resulting matrix elements that enabled us to solve, with a
controlled accuracy, larger geometries than those presented
in the literature. Efficient numerical solutions for the gener-
alized ‘‘conical-section’’ profiles have been obtained in the
case of a directive incident field, to study the effect of the
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strip shape on the beamforming. This will be used as a basis
in follow-on dual-reflector antenna simulations.
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9. T. Oguzer, A. Altintaş, and A.I. Nosich, Accurate simulation ofˇ

reflector antennas by complex source#Dual series approach,
Ž .IEEE Trans Antennas Propagat 43 1995 , 793�802.

10. T. Oguzer, A.I. Nosich, and A. Altintaş, Radiation characteristicsˇ
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ABSTRACT: The design of a polarization preser�ing reflected beam
( )splitter PPRBS is presented. The PPRBS consists of a V-shaped

absorbing substrate coated with a single thin-film layer. The PPRBS
operates in the UV region. The power reflection coefficient ranges from
69 to 90% for angles of incidence ranging from 85 to 89�, respecti�ely.
� 2001 John Wiley & Sons, Inc. Microwave Opt Technol Lett 31:
484�487, 2001.

Key words: polarization preser�ing; reflected beam splitter; single-layer
coating; absorbing substrate; UV range

1. INTRODUCTION

Polarization-preserving devices are often needed in optical
systems to preserve the polarization state of the incoming
light after it goes through reflection or transmission. A num-
ber of polarization-preserving devices are reported in the
literature. These devices consist of two parallel or orthogonal
reflected substrates coated with appropriate thin-film layers
� �1�3 . In these devices, the incoming beam has to reflect off
two substrates before it can return back to its original polar-
ization. In this paper, we introduce the polarization-preserv-

Ž .ing reflected beam splitter PPRBS . The PPRBS splits the
incoming beam into two beams with two different directions.
The state of polarization of the two beams is the same as the
incoming beam. The advantage that the PPRBS has over the
previously reported devices is that the PPRBS preserves
the polarization of the incoming beam without the need to go
through a second reflection.

The PPRBS consists of a V-shaped absorbing substrate
coated with a single thin-film layer. The designed PPRBS

Ž .operates in the ultraviolat UV region. Two different materi-
als are considered as a substrate for the PPRBS. The first

Ž .material is germanium Ge , with a complex reflection index
N � 2.516 � j4.669 at a wavelength �� 4.4 eV or 281.93 nm.

Ž .The second material is gallium antimonide GaSb , with a
complex reflection index N � 2.522 � j4.13 at a wavelength

� ��� 4.2 eV or 295.35 nm 4 . The power reflection coefficient
of the PPRBS ranges from 69 to 90% for an angle of
incidence ranging from 85 to 89�.

2. PROBLEM STATEMENT

Consider the structure shown in Figure 1. The structure
consists of a V-shaped absorbing substrate of a complex index
of refraction N � n � jk . The substrate is placed in a2 2 2
medium of refractive index N . In this paper, we use N � 10 0
for air. Both surfaces of the substrate are coated with a single

Figure 1 PPRBS layout
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