

3. Consequences of Regularization

Fredholm's theorems

$$
X+A(k) X=B
$$

Existence of exact solution:
If operator equation is equivalent to BVP, then

$$
\xrightarrow{ } \longrightarrow X=(I+A(k))^{-1} B
$$ its solution is unique for all real wavenumbers k

Point-wise convergence of discrete solutions:

$$
\begin{aligned}
& e(N)=\left\|X-X^{N}\right\|(\|X\|)^{-1} \\
& \leq\left\|(I+A)^{-1}\right\| \cdot\left\|A-A^{N}\right\| \xrightarrow[N \rightarrow \infty]{ } 0
\end{aligned}
$$

Condition number is stable:

$$
\operatorname{cond}(I+A)=\|I+A\| \cdot\left\|(I+A)^{-1}\right\|<\infty
$$

4. Efficient Regularization Schemes

What is invertible?

$G \xrightarrow{\longrightarrow} G=G_{1}+G_{2} \quad ? G_{1}$

- Canonical-shape part (circular-cylinder \& sphere)
well developed - trigonometric basis; used for multiple canonical scatterers \& in a layered host medium

Small-contrast part
well developed - Muller equations, (loaded) volume IE

- Static part: PEC and imperfect zero-thickness screens
well developed - EFIE + Chebyshev basis in 2-D;
variants - in FT domain, RHP (in periodic case)
- HF (halfplane) part: PEC and imperfect screens
scarcely developed - most promising for solving
big problems of quasioptics with economic algorithms

5. Dielectric Cylinder Scattering - Formulation

Boundary-value problem

Scattering by an arbitrary smooth dielectric cylinder. Incident field is a plane wave in the reception mode and a directive localized source field in the transmission mode

$$
\text { wavenumber } \quad k_{j}=k \sqrt{\varepsilon_{j} \mu_{j}} \quad \alpha_{j}=1 / \mu_{j} \text { or } \quad 1 / \varepsilon_{j}
$$

2D BVP: Find

$$
u_{j}(\vec{r}), \quad r \in D_{j} j=1,2, \text { such that }
$$

1. Helmholtz equation off $S: \quad\left(\Delta+k_{j}^{2}\right) u_{j}^{S C}(\vec{r})=0$
2. Boundary conditions at S :

$$
\left.u_{1}(\vec{r})\right|_{S}=\left.u_{2}(\vec{r})\right|_{S} \quad \text { and }\left.\quad \alpha_{1} \frac{\partial u_{1}(\vec{r})}{\partial n}\right|_{S}=\left.\alpha_{2} \frac{\partial u_{2}(\vec{r})}{\partial n}\right|_{S}
$$

3. Sommerfeld radiation condition

4祭

6. Muller's Boundary Integral Equations

Small contrast inversion

Fields representation = combination of the single and double layer potentials

$$
\begin{array}{ll}
u_{1}(\vec{r})=\int_{S}\left[p_{1}\left(\vec{r}_{s}\right) \frac{\partial G_{1}\left(\vec{r}, \vec{r}_{s}\right)}{\partial n_{s}}-q_{1}\left(\vec{r}_{s}\right) G_{1}\left(\vec{r}, \vec{r}_{s}\right)\right] d l_{s} & \vec{r} \in D_{1} \\
u_{2}(\vec{r})=\int_{S}\left[q_{2}\left(\vec{r}_{s}\right) G_{2}\left(\vec{r}, \vec{r}_{s}\right)-u_{2}\left(\vec{r}_{s}\right) \frac{\partial G_{2}\left(\vec{r}, \vec{r}_{s}\right)}{\partial n_{s}}\right] d l_{s}+u_{0}(\vec{r}) & \vec{r} \in D_{2}
\end{array}
$$

Parameterization + Boundary conditions =>
Uniquely solvable set of BIEs of the Fredholm $2^{\text {nd }}$ kind :

$$
\left\{\begin{array}{c}
p_{1}(t)-\int_{0}^{2 \pi} p_{1}\left(t_{s}\right) A\left(t, t_{s}\right) d t_{s}+\int_{0}^{2 \pi} q_{1}\left(t_{s}\right) B\left(t, t_{s}\right) d t_{s}=L(t) u_{0}(t) \\
\left(1+\frac{\alpha_{1}}{\alpha_{2}}\right) \frac{q_{1}(t)}{2}-\int_{0}^{2 \pi} p_{1}\left(t_{s}\right) C\left(t, t_{s}\right) d t_{s}+\int_{0}^{2 \pi} q_{1}\left(t_{s}\right) D\left(t, t_{s}\right) d t_{s}=L(t) \frac{\partial u_{0}(t)}{\partial n} \\
\alpha_{j}=\mu_{j} \text { or } \varepsilon_{j} \quad \text { for E- or } H \text {-polarization }
\end{array}\right.
$$

पF
 7. Muller's Boundary Integral Equations

Kernel properties \& discretization

In one of the kernels, a log-type singularity is kept; others are regular
$A\left(t, t_{s}\right)=L(t)\left(\frac{\partial G_{1}}{\partial n_{s}}-\frac{\partial G_{2}}{\partial n_{s}}\right) B\left(t, t_{s}\right)=L(t)\left(G_{1}-\frac{\alpha_{1}}{\alpha_{2}} G_{2}\right) \quad C\left(t, t_{s}\right)=L(t)\left(\frac{\partial^{2} G_{1}}{\partial n_{s} \partial n}-\frac{\partial^{2} G_{2}}{\partial n_{s} \partial n}\right)$
$\|A\|, \ldots,\|D\|<(\varepsilon-1)$ Const $\quad D\left(t, t_{s}\right)=L(t)\left(\frac{\partial G_{1}}{\partial n}-\frac{\alpha_{1}}{\alpha_{2}} \frac{\partial G_{2}}{\partial n}\right)$
Computing the singular integrals is improved by adding and subtracting the canonical-circle operators, e.g. \mathbf{G}^{0}

$$
\stackrel{o}{G}=\frac{i}{4} H_{0}\left(2 k a \operatorname{Sin}\left|\left(t-t_{s}\right) / 2\right|\right)
$$

MBIEs + trigonometric-Galerkin discretization
=>Fred.-2 Matrix Equation filled in with DFFT

$$
p(t) L(t)=\frac{2}{i \pi} \sum_{m=-\infty}^{\infty} p_{n} e^{i m t}
$$

$\left\{\begin{array}{l}\sum_{m=-\infty}^{\infty} p_{m}\left(\delta_{k m}+A_{k m}\right)+\sum_{m=-\infty}^{\infty} q_{m} B_{k m}=u_{k} \\ \sum_{m=-\infty}^{\infty} p_{m} C_{k m}+\sum_{m=-\infty}^{\infty} q_{m}\left(\delta_{k m}+D_{k m}\right)=\bar{u}_{k}\end{array}\right.$
If the natural parameteriz
is used: $L(t)=1$

LIT

8. MBIE Algorithm Properties

Test example: super-ellipse

"super-ellipse" cross-section
Homogeneous dielectric cylinder:
«super-ellipse» = rectangle with smoothed edges:

$(x / l a)^{2 v}+(y / a)^{2 v}=1 \quad 0<v<\infty$

Relative computational error
determined by norm in l_{2}

Computational error versus matrix block size N

9. Radiation of a Dielectric Rod Antenna

Far-field characteristics: pattern, radiated power \& directivity

$$
\Phi(\varphi)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} p_{n} \int_{0}^{2 \pi} e^{-i k\left(\cos (\varphi) x\left(t_{s}\right)+\sin (\varphi) y\left(t_{s}\right)\right)} \cdot e^{\mathrm{int}} d t_{s}
$$

$$
\begin{aligned}
& P^{r a d}=\alpha_{0} \frac{2}{\pi} \int_{0}^{2 \pi}|\Phi(t)|^{2} d t \\
& D(\varphi)=2 \alpha_{0}|\Phi(\varphi)|^{2} \cdot\left(k P^{r a d}\right)^{-1}
\end{aligned}
$$

Elliptic rod geometry and notations: curvy line is the CSP feed aperture "I" is the elongation (axes ratio)

Directivity versus the rod elongation; dashed = in the main lobe, solid $=$

48 10. Wave Focusing by Elliptic-Front Lenses

Geometry \& Principle

Cross-sectional

contour: $s=s_{1} \cup s_{2}$
twice-continuous curve combined from smoothly joined halves of ellipse and superellipse

GO: Parallel rays come to the rear focus of the ellipse if the eccentricity
is $e=1 / \sqrt{\varepsilon}$

4잭 12. Wave Focusing by Elliptic-Front Lenses
Near field characteristics

25 14. Wave Focusing by Elliptic-Front Lenses

Near field characteristics

15 16. PEC Strip Scattering - Formulation

Boundary-value problem

Scattering by an arbitrary smooth open cylindrical PEC strip. Incident field is a plane wave in the RCS analysis and a directive localized feed field in the reflector antenna analysis

$$
\text { 2-D BVP: find such } \quad u^{S C}(\vec{r}), \quad u=u^{i n}+u^{S C} \quad \text { that }
$$

1. Helmholtz equation off M :

$$
\left(\Delta+k^{2}\right) u^{s c}(\vec{r})=0
$$

2. Boundary conditions at M :

$$
\left.u(\vec{r})\right|_{M}=0, \quad E-p o l .\left.\quad \frac{\partial u(\vec{r})}{\partial n}\right|_{M}=0, \quad H-p o l .
$$

3. Sommerfeld radiation condition

17. Electric-Field Integral Equations

Singular Integral Equations

Fields representation - single/double layer potential:

> E-pol.

H-pol.
$u(\vec{r})=\int_{M} p\left(\vec{r}_{s}\right) G_{0}\left(\vec{r}, \vec{r}_{s}\right) d l_{s}, \quad u(\vec{r})=\int_{M} q\left(\vec{r}_{s}\right) \frac{\partial}{\partial n_{s}} G_{0}\left(\vec{r}, \vec{r}_{s}\right) d l_{s}$

$$
G_{0}\left(\vec{r}, \vec{r}_{s}\right)=\frac{i}{4} H_{0}^{(1)}\left(k\left|\vec{r}-\vec{r}_{s}\right|\right) \quad \text { Free space Green's function }
$$

Parameterization of contour $M=>$ Boundary conditions => Singular IEs of the $1^{\text {st }}$ kind

E-polarization
H-polarization
$\int_{-1}^{1} p\left(t_{s}\right) G_{0}\left(t, t_{s}\right) L\left(t_{s}\right) d t_{s}=-u^{i n}(t), \quad \frac{\partial}{\partial n} \int_{-1}^{1} q\left(t_{s}\right) \frac{\partial}{\partial n_{s}} G_{0}\left(t, t_{s}\right) L\left(t_{s}\right) d t_{s}=-\frac{\partial u^{i n}(t)}{\partial n}$

Direct discretization of SIE does not guarantee convergence, is inefficient and inaccurate

18. EFIE \& Method of Analytical Preconditioning

Static-part inversion: diagonalization with eigenfunctions

Green's function decomposition =static singular part + regular part

$$
G_{0}\left(\vec{r}, \vec{r}_{s}\right)=\frac{i}{4} \ln \left|\vec{r}-\vec{r}_{s}\right|+R\left(k\left|\vec{r}-\vec{r}_{s}\right|\right)
$$

E-pol.
$\int_{-1}^{1} \frac{T_{n}\left(t_{s}\right)}{\left(1-t_{s}\right)^{1 / 2}} \ln \left(t-t_{s}\right) d t_{s}=\sigma_{n} T_{n}(t), \quad T_{n}(t)=\quad \begin{aligned} & \text { Chebyshev polynomials } \\ & \text { of the 1-st kind }\end{aligned}$
H-pol.

To transform SIE to the Fredholm $2^{\text {nd }}$ kind matrix equation, take full set of the corresponding polynomials as a basis (l.e., make analytical preconditioning)

$$
\begin{gathered}
A X=B \\
\| \\
\stackrel{I I}{ } \\
X+C X=D
\end{gathered}
$$

21. Radiation of Discrete Luneburg Lens Fed by Conformal Feed

Lens => small shift of SCMA resonance + whispering-gallery modes
22. Conclusions: Merits of Analytical Regularization of Integral Equations

1. Generates convergent and economic scattering algorithms with easily controlled accuracy
2. Leads to reliable simulations that predict even finest field features
3. Easily accesses quasioptical range
4. Is promising for CG iterative solvers
5. Can serve as a fast core for optimization
6. Enables explicit asymptotic solutions

7. Reduces eigenvalue problems to favorable determinant equations
