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Reduction of EM BVP to a Fredholm’s operator equation 

2. Fundamentals of Analytical Regularization

• Maxwell equations

• Boundary conditions

• Edge condition

• Radiation condition

YGX =

Fredholm 2-nd kind IE or 
infinite-matrix equation

Suppose that:

• Integral equations

• Series equations
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Boundary-value problem



2

Fredholm’s theorems 

3. Consequences of Regularization

If operator equation is
equivalent to BVP, then
its solution is unique for
all real wavenumbers k

Condition number is stable:

Point-wise convergence of discrete solutions:
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Existence of exact solution:

What is invertible? 

4. Efficient Regularization Schemes

• Canonical-shape part (circular-cylinder & sphere)

well developed – trigonometric basis; used for 

multiple canonical scatterers & in a layered host medium

Small-contrast part

well developed – Muller equations, (loaded) volume IE

• Static part: PEC and imperfect zero-thickness screens

well developed – EFIE + Chebyshev basis in 2-D; 

variants – in FT domain, RHP (in periodic case)

• HF (halfplane) part: PEC and imperfect screens

scarcely developed – most promising for solving

big problems of quasioptics with economic algorithms

21 GGG +=G 1G?
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Boundary-value problem 

5. Dielectric Cylinder Scattering - Formulation

Scattering by an arbitrary smooth 
dielectric cylinder. Incident field is a 
plane wave in the reception mode 
and a directive localized source field 
in the transmission mode
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2. Boundary conditions at S:

1. Helmholtz equation off S:

3. Sommerfeld radiation condition
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Small contrast inversion

6. Muller’s Boundary Integral Equations 
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Parameterization + Boundary conditions =>

Uniquely solvable set of BIEs of the Fredholm 2nd kind :

j = 1,2

jj µα = jεor  for E- or H-polarization 
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Kernel properties & discretization

7. Muller’s Boundary Integral Equations

In one of the kernels, a log-type singularity is kept; others are regular
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MBIEs + trigonometric-Galerkin discretization
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Computing the singular integrals is 
improved by adding and subtracting 
the canonical-circle operators, e.g. G0
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If the natural parameterization 

is used: L(t)=1 

Test example: super-ellipse

8. MBIE Algorithm Properties
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Homogeneous dielectric cylinder: 

«super-ellipse» = rectangle with smoothed edges:
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3 digit accuracy is achieved if

"super-ellipse" cross-section
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9. Radiation of a Dielectric Rod Antenna
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Elliptic rod geometry and notations:
curvy line is the CSP feed aperture,

“l” is the elongation (axes ratio)

Far-field characteristics: pattern, 
radiated power & directivity

Directivity versus the rod elongation; dashed = in the main lobe, solid = 
along the axis (ϕ =β ). ka =1, ε =2.5, ν =1, kb =0.1, β =π; ∆/a=0.7; y0/a =0.
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10. Wave Focusing by Elliptic-Front Lenses
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Near field characteristics 

11. Wave Focusing by Elliptic Lenses

Near-field intensity 
portraits for true 
elliptic lenses of 
various sizes

ka = 5

ka = 30

ka = 10

Near field characteristics

12. Wave Focusing by Elliptic-Front Lenses

Near-field 
intensity 
portraits for 

Extended

Hemi-Elliptic
(EHE) 

and 

Hemi-Circular
(EHC) 

silicon lenses

EH-Circle lens EH-Elliptic lens

γ = 00

γ = 200

ka = 10

ε = 11.7
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Near field characteristics

13. Wave Focusing by Elliptic-Front Lenses

Focusability
vs l1
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Near field characteristics

14. Wave Focusing by Elliptic-Front Lenses

Near-field intensity portraits 
for EHE and EHC silicon 
lenses for various values of 
extension parameter ( l1 )

EH-Circle lens EH-Elliptic lens
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Near fields of modes in open 2-D dielectric resonators

15. Natural Modes of Microcavities

Eigenfrequency boundary-
value problem => Muller’s 
boundary integral equations 
=> analytical extraction of 
circular-contour part => 
determinant equation

Det (I+A(k))=0

Modes in a square cavity 
with rounded edges 
(superellipse with ν=10)

and in a curved triangular 
cavity

Refractive index is 2.63
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Boundary-value problem

16. PEC Strip Scattering - Formulation

Scattering by an arbitrary smooth 
open cylindrical PEC strip. Incident 
field is a plane wave in the RCS 
analysis and a directive localized 
feed field in the reflector antenna  
analysis
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3. Sommerfeld radiation condition
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Singular Integral Equations

17. Electric-Field Integral Equations 

Fields representation – single/double layer potential:
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Parameterization of contour M => Boundary conditions => Singular IEs of the 1st kind

Direct discretization of SIE does not guarantee convergence, is inefficient and inaccurate

Free space Green’s function
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Static-part inversion: diagonalization with eigenfunctions

18. EFIE & Method of Analytical Preconditioning 
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Green’s function decomposition =static singular part + regular part
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Static-part inversion: diagonalization with eigenfunctions

19. Scattering by a Dielectric Strip Grating  
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Generalized boundary conditions on thin dielectric strips:

Fractions of transmitted, reflected 
and absorbed power versus 
normalized frequency, εr=10+i, ϕ=00, 
2w/d=0.5, τ/d=0.01.

Fractions of transmitted, reflected 
and absorbed power versus 
normalized frequency, εr=10+i, ϕ=00, 
2w/d=0.5, τ/d=0.01. 
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20. Radiation of Discrete Luneburg Lens 
Fed by Conformal Feed 
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Conformal patches

Lens:   
concentric 
spherical layers 
of uniform 
dielectrics

Patches: PEC,
zero-thickness,
co-axial
spherical disks,
0≤θ ≤π

Given 
driving 
current: 
centered 
RED or 
TMD,
as a probe 
or a  slot 
model
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21. Radiation of Discrete Luneburg Lens 
Fed by Conformal Feed  

SCMA structure :

θin = 0.02°, 
θout = 0.04°

rin/rout = 0.999

"large lens"
Lens structure :

Nshell : number of shells

θi = 0, ri = i/ Nshell

εri = 2 - [(2i-1)/ 2Nshell] ²
shellNi1i, ≤≤∀

Lens => small shift of SCMA resonance + whispering-gallery modes 

22. Conclusions: Merits of Analytical 
Regularization of Integral Equations

1. Generates convergent and economic 
scattering algorithms with easily 
controlled accuracy 

2. Leads to reliable simulations that predict 
even finest field features 

3. Easily accesses quasioptical range

4. Is promising for CG iterative solvers

5. Can serve as a fast core for optimization

6. Enables explicit asymptotic solutions

7. Reduces eigenvalue problems to 
favorable determinant equations 


