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Abstract
The radiation of a double‐layer spherical dielectric lens equipped with a conformal
spherical‐disk PEC reflector and excited by elementary sources located on the antenna
axis of rotation is considered. The sources are either a radial electric dipole or a tangential
magnetic dipole. Using the analytical inversion of the static part of the homogeneous‐lens
problem with the aid of the Abel integral transform, developed earlier for plane‐wave
scattering, each of the considered problems are cast to the Fredholm second‐kind
infinite matrix equation with elements containing only the elementary functions. This
guarantees convergence and enables accurate characterisation of the considered lens
antennas in terms of directivity and total radiated power, in wide frequency range. It is
demonstrated that the best directivity is provided by the quasi‐Luneburg lens configu-
ration with dielectric constants of the core and the shell being 2 and 1.1, respectively, shell
thickness being 0.1 of the outer lens radius, and reflector size around 30°. This perfor-
mance, however, is spoiled by the whispering‐gallery‐mode resonances that can be
effectively alleviated by the introduction of the moderate losses to the shell material.

1 | INTRODUCTION

Homogeneous dielectric sphere is the simplest lens with the
focal point emerging off the lens, according to the geometrical
optics (GO), if its dielectric constant is less than 4 [1]. A non‐
homogeneous Luneburg lens was proposed in [2] on the basis
of GO analysis of the focussing by a dielectric sphere with
dielectric constant equal to two in the centre and 1 at the
boundary; GO predicts the focal point just on its surface. Its
more practical version, a discrete Luneburg lens fed by a small
horn was apparently introduced to microwave antenna tech-
nology [3–7]. The interest in spherical‐lens antennas soon
faded off because of the absence of low‐loss dielectric mate-
rials and strong competition from other antennas. In the
1990s, however, this interest emerged again with an emphasis
on millimetre‐wave point‐to‐multipoint communication [8],
and since then most of the technological problems seem to
have been overcome. New application areas have appeared,

such as radio astronomy and vehicle radar [9, 10]. In terms of
the spherical lens theory and modelling, the shape of such a
lens offers the rare opportunity to solve analytically the wave
scattering problems by reducing them to the Mie series.
However, any dielectric antenna consists of not only a lens but
also a feed, which is frequently a small horn or a printed
circuit. Therefore, the following steps are important: solving
the discrete Luneburg lens fed by a Huygens source (crossed
elementary electric and magnetic dipoles) [11] and by a
complex‐source‐point (CSP) as a model of beam radiated by
an aperture and having controlled beam‐width [12]. Apart
from that, since the early 1990s there has appeared new in-
terest in even shorter waves of the terahertz and sub‐
millimetre ranges. Here, of course, quasi‐optical approaches
are even more appropriate; hence, it is no surprise that
dielectric lenses are the key components of all terahertz sys-
tems. It was in this context that the concept of the integrated
lens antenna (ILA) appeared.
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The ILA combines an essentially quasi‐optical principle
(focussing) with a resonance effect (in the printed cavity); in
terms of engineering, it has turned out to be quite successful.
However, it introduced a huge challenge to the accurate
simulation efforts because the theories put in the core of the
modelling of these two components (lens and printed circuit)
are drastically different.

On the one hand, GO and other high‐frequency asymp-
totic approaches usually applied to the lenses’ analyses fail
completely to reproduce the field features associated with
wavelength‐size printed components. On the other hand, no
conventional MoM code can avoid failure if applied to a
printed feed plus a 30‐wavelength diameter dielectric‐lens
problem. Generally speaking, any ILA should a priori display
a complicated interplay of both ray‐like and mode‐like phe-
nomena. This circumstance calls for the use of full‐wave
techniques; however, so economic and fast that even the
quasi‐optical effects arising when the lens has a few dozen
wavelength size, can be addressed accurately and in reasonable
time.

As is well‐known, such high performance can be achieved
either with the method of analytical regularisation (MAR) [13]
or with the Nystrom‐type discretisations applied to the integral
equations [14]. In particular, the MAR based on the analytical
regularisation of the dual‐series equations was developed in
[15–18] for the analysis of several spherical antennas and
scatterers, equipped with a perfectly electrically conducting
(PEC) spherical disk, however, only under the normal inci-
dence. The double PEC disk circuit, integrated with a discrete
Luneburg lens and fed by a radial Hertz electric dipole (RED)
and a tangential Hertz magnetic dipole (TMD) was analysed
with the same scheme in [19]. The arbitrary plane‐wave inci-
dence was successfully handled by the MAR on regularising the
Galerkin projection [20, 21] for the discrete Luneburg lens and
homogeneous spherical lens, equipped with a conformal PEC
spherical‐disk reflector.

The aim of our work is to check how the directivity of a
dipole‐fed homogeneous spherical lens antenna can be further
improved by combined use of a PEC disk reflector and an
additional thin shell layer. In our study, we will follow [15–19]
because on‐axis dipoles enforce either no or simple azimuth
dependence. An additional merit is that this approach leads to
the Fredholm second‐kind matrix equations that do not
involve numerical integrations for filling in the matrix.

2 | MATHEMATICAL FORMULATION
AND BASIC EQUATIONS

Here we consider a double‐layer spherical, dielectric lens an-
tenna excited by an on‐axis RED or TMD and backed with a
conformal spherical PEC reflector (Figure 1). The non‐
magnetic lens core and shell have relative dielectric constants
of ε1 and ε2, respectively. The zero‐thickness reflector has an
angular width of 2θ0 in the spherical coordinates ðr;φ; θÞ. The
RED or TMD source is located in the shell layer.

2.1 | Lens excitation with on‐axis RED

The considered electromagnetic field problem is three‐
dimensional but rotationally symmetric. The total field in the
presence of the lens must satisfy the Maxwell equations, the
boundary and continuity conditions for the tangential field
components on the PEC reflector and material interfaces,
respectively, the edge condition (local power finiteness), and
the Silver‐Muller outgoing radiation condition at infinity.

We introduce three partial domains: “#1” is the lens core,
“#2” is the lens shell, and “3” is the space outside the lens. The
dipole source, RED, is assumed to be in domain “#2”.

F I GURE 1 Core‐shell spherical dielectric lens with conformal
perfectly electrically conducting disk fed by radial electric (a) and tangential
magnetic (b) dipoles
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Following [17] and using the addition theorem for the
spherical harmonics, we present the field components of the
RED tangential to the lens surface as the following expansions:

Eð0Þθ ¼
Z0B
ffiffiffi
ε
p

X∞

n¼1
ð2nþ 1Þ

�
ψnðkbÞζ0nðkrÞ; r > b
ζnðkbÞψ 0nðkrÞ; r < b

�

P1
nðcos θÞ; ð1Þ

H ð0Þφ ¼ B
X∞

n¼1
ð2nþ 1Þ

�
ψnðkbÞζnðkrÞ; r > b
ζnðkbÞψnðkrÞ; r < b

�

P1
nðcos θÞ ð2Þ

where Eð0Þφ ¼ 0, H ð0Þθ ¼ 0. Here, the RED is assumed to be
shifted by the distance b along the symmetry axis in the me-
dium with the relative dielectric constant ε. Besides, the
following notations are introduced: ψnð⋅Þ and ζnð⋅Þ are the
spherical Bessel and Hankel (first‐kind) functions, respectively,
in the Debye notations, P1

nð⋅Þ are the associated Legendre
functions of the first kind, k0 ¼ ω=c, k¼ k0

ffiffiffi
ε
p

, Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p

is the free‐space impedance, and p¼ Ie0l, where Ie0 is the
amplitude of the electric current in the dipole and l is the
length of dipole, B¼ −pð4πkb2rÞ−1.

Taking into account (1) and (2), we look for the total field
components in each space domain in terms of similar series
with unknown coefficients. In the domain “#1” (r < a),

Eð1Þθ ¼
Z0B
ffiffiffiffiε1
p

X∞

n¼1
ð2nþ 1Þtnψ 0nðk1rÞP

1
nðcos θÞ; ð3Þ

H ð1Þφ ¼
X∞

n¼1
ð2nþ 1Þtnψnðk1rÞP

1
nðcos θÞ; ð4Þ

In the domain “#2” (a < r < c), Eð2Þ ¼ Eð0Þ þ Eð2Þsc,
H ð2Þ ¼H ð0Þ þH ð2Þsc, where Eð0Þ, H ð0Þ stand for the dipole
field components from (1) and (2), and Eð2Þsc, H ð2Þsc are for the
components of the scattered field.

Eð2Þscθ ¼
Z0B
ffiffiffiffiε2
p

X∞

n¼1

�
2nþ 1

��
xnψ 0nðk2rÞ þ ynζ0nðk2rÞ

�
P1
nðcos θÞ; ð5Þ

H ð2Þscφ ¼ B
X∞

n¼1

�
2nþ 1

��
xnψnðk2rÞ þ ynζnðk2rÞ

�
P1
nðcos θÞ; ð6Þ

In the domain “#3” (r > c),

Eð3Þθ ¼ Z0B
X∞

n¼1

�
2nþ 1

�
znζ0nðk0rÞP

1
nðcos θÞ; ð7Þ

H ð3Þφ ¼ B
X∞

n¼1
ð2nþ 1Þznζnðk0rÞP

1
nðcos θÞ ð8Þ

Note that the above expansions already satisfy the Maxwell
equations and the outgoing radiation condition, in term‐by‐
term manner. Hence, now we have to find the unknown co-
efficients ftn; xn; yn; zng

∞
n¼1 using the boundary conditions and

the edge condition at the reflector’s rim.
The conditions at the lens’ core‐shell boundary are the

continuity conditions of the field tangential components.

Eð1Þθ jr¼a ¼ Eð2Þθ jr¼a; H ð1Þφ jr¼a ¼H ð2Þφ jr¼a; ð9Þ

The conditions at the outer surface of the lens shell are of
the mixed type: they are the continuity conditions of the
tangential components at the dielectric surface and the van-
ishing of the electric field at the PEC reflector.

Eð2Þθ jr¼c ¼ Eð3Þθ jr¼c ¼ 0; if θ ∈
�
0; θ0

�
ð10‐aÞ

H ð2Þφ jr¼c ¼H ð3Þφ jr¼c; if θ ∈
�
θ0;π

�
ð10‐bÞ

Further, we eliminate some of the unknown coefficients so
that only one of the four sets remains. Then the mixed con-
ditions (10) lead to the following dual‐series equation (DSE):

8
>>><

>>>:

X∞

n¼1
~znð1 − ΔnÞP1

nðcos θÞ ¼ 0; θ ∈ ½0; θ0Þ;

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

~znP1
nðcos θÞ ¼

X∞

n¼1
ð2nþ 1ÞαnP1

nðcos θÞ; θ ∈ ðθ0;π�;

ð11Þ

where

Δn ¼ 1þ
ð1þ ε2Þ

2
k0c
ð2nþ 1Þ
nðnþ 1Þ

�

(
ζnðk0cÞ
ζ0nðk0cÞ

−
ffiffiffiffi
ε2
p

ζ0nðk0cÞ½Anψnðk2cÞ þ Bnζnðk2cÞ�
Anψ 0nðk2cÞ þ Bnζ0nðk2cÞ

)−1

ð12Þ

αn ¼
1
ffiffiffiffiε2
p

�
ψnðk2bÞζ0nðk2cÞ − ζnðk2bÞψ 0nðk2cÞ

Anψ 0nðk2cÞ þ Bnζ0nðk2cÞ

� ½Anψnðk2cÞ þ Bnζnðk2cÞ� þ ζnðk2bÞψnðk2cÞ−ψnðk2bÞζnðk2cÞg
ð13Þ

zn ¼
~zn

nðnþ 1Þ

( ffiffiffiffiε2
p ζ0nðk0cÞ½Anψnðk2cÞ þ Bnζnðk2cÞ�

Anψ 0nðk2cÞ þ Bnζ0nðk2cÞ
− ζnðk0cÞ

)−1

ð14Þ
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An ¼ ψnðk1aÞζ
0
nðk2aÞ − ψ 0nðk1aÞζnðk2aÞ

ffiffiffiffiffiffiffiffiffiffiffi
ε2=ε1

p
; ð15Þ

Bn ¼ ψnðk2aÞψ 0nðk1aÞ
ffiffiffiffiffiffiffiffiffiffiffi
ε2=ε1

p
− ψ 0nðk2aÞψnðk1aÞ; ð16Þ

tn ¼ i
ffiffiffiffiffi
ε1
ε2

r �
znζ0nðk0cÞε2 þ ζnðk2bÞψ 0nðk2cÞ − ψnðk2bÞζ

0
nðk2cÞ

�

Anψ 0nðk2cÞ þ Bnζ0nðk2cÞ

ð17Þ

xn ¼ −ζnðk2bÞ − i
ffiffiffiffiffiffiffiffiffiffiffi
ε2=ε1

p
tnAn ð18Þ

Now we can integrate the first of Equation (11) in θ and
take into account that ∫ P1

nðcos θÞdθ ¼ C − Pnðcos θÞ, where
C is an arbitrary constant. Then we obtain,

X∞

n¼1
~znð1 − ΔnÞPn

�
cos θ�¼ CP0

 

cos θ
!

; θ ∈
"

0; θ0
!

; ð19Þ

The derived DSE can be further transformed with the aid
of the Abel integral transform, applied term‐by‐term to the
Legendre polynomials and associated functions.

Pnðcos θÞ ¼
ffiffiffi
2
p

π
∫
θ

0

cos½ðnþ 1=2Þϑ�dϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ϑ − cos θ
p ; ð20Þ

P1
nðcos θÞ ¼

−2
ffiffiffi
2
p

π sin θ
nðnþ 1Þ
2nþ 1

∫
π

θ

cos½ðnþ 1=2Þθ�sin ϑdϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θ − cos ϑ
p ð21Þ

As the homogeneous Abel integral equation has only zero
solution, the integrand functions in the transformed equations
must vanish. Hence, we obtain a new DSE in terms of the
trigonometric functions.

8
>>>><

>>>>:

X∞

n¼1
~znð1 − ΔnÞcos

�

nþ
1
2

�

θ ¼ C cosðθ=2Þ; θ ∈ ½0; θ0Þ;

X∞

n¼1
~zn cos

�

nþ
1
2

�

θ ¼
X∞

n¼1
nðnþ 1Þαncos

�

nþ
1
2

�

θ; θ ∈ ðθ0;π�;

ð22Þ

Note that Δn ¼Oðk20c
2n−1Þ þOðða=cÞ2nþ1Þ→ 0 if

k0c→ 0 or n→ ∞. Thus, the main part of this DSE corre-
sponds to the static problem for a homogeneous sphere with a
PEC cap. It can be analytically inverted using the inverse
Fourier transform [17, 18]. After the exclusion of the constant
C, the following infinite‐matrix equation is obtained for ~zn:

~zm −
X∞

n¼1
~zmΔnQð1Þnmðθ0Þ ¼

X∞

n¼1
nðnþ 1Þαn

�
δm
n − Qð1Þnmðθ0Þ

�
;

ð23Þ

where

Qð1Þnmðθ0Þ ¼Qnmðθ0Þ − Q0mðθ0ÞQn0ðθ0ÞQ−1
00 ðθ0Þ; ð24Þ

Qnmðθ0Þ ¼
sinðm − nÞθ0

πðm − nÞ
þ

sinðmþ nþ 1Þθ0

πðmþ nþ 1Þ
ð25Þ

Since
P∞

m;n¼0
�
�ΔnQð1Þnmj

2 < ∞, (23) is a Fredholm operator
equation of the second kind in the space of numerical se-
quences l2 (~z ∈ l2 if

P∞
n¼0

�
�~zn
�
�2 < ∞) under the condition that

the right hand part vector also belongs to l2, that holds true
provided that a < b < c. Then, the Fredholm alternative gua-
rantees the solution’s existence in l2, as the uniqueness of the
solution is provided by the equivalence to the boundary‐value
problem for Maxwell equations. Moreover, after the truncation
of (23) to a finite order N, the convergence at N → ∞, by the
l2‐norm, is guaranteed [13].

In the RED‐excited antenna modelling, we are interested in
the radiation resistance defined as

R¼ 2�P=jIe0j
2
; ð26Þ

where the power radiated by the antenna is

�P ¼
Z0

8π
ðk0pÞ

2

ðk0bÞ
4

X∞

n¼1
nðnþ 1Þð2nþ 1Þ

�
�zn
�
�2 ð27Þ

This value is conveniently normalised by the radiation
resistance associated with a dipole in the free space.

R0 ¼ ð6πÞ−1Z0k
2
0p

2=jIe0j
2

ð28Þ

Note that if Ie0 ¼ const then R=R0 ¼ �P=P0.
The directivity of the antenna is defined as

D¼ 4πr2Pmax=�P; ð29Þ

where Pmax is the power radiated in the main beam direction
that entails

D¼
Z0

4π�P
ðk0pÞ

2

ðk0bÞ
4

�
�
�
�
�

X∞

n¼1
ð− iÞnð2nþ 1ÞznP1

nðcos θmaxÞ

�
�
�
�
�

2

ð30Þ

Note that for an RED in the free space the directivity is
D0 ¼ 3=2 and the main‐beam direction is θmax ¼ 90o.

1252 - TIKHENKO ET AL.



2.2 | Lens excitation with on‐axis TMD

Unlike the previous case, this problem is not rotationally
symmetric; hence, all six components of the field are present.
Still, they have only one variation in azimuth, expressed by
either sin φ or cos φ function.

The field components of the TMD shifted by the dis-
tance b along the symmetry axis in the medium with
dielectric constant ε can be expanded in terms of the
spherical harmonics similarly to the RED case (1) and (2).
For instance,

Eð0Þθ ¼
iq sin φ
4πbr

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

2

6
4
X∞

n¼1

8
><

>:

ψnðk2bÞζ
0
nðkrÞ; r > b

ζnðk2bÞψ 0nðkrÞ; r < b

9
>=

>;

�
∂P1

nðcos θÞ
∂θ

þ

8
><

>:

ψ 0nðk2bÞζnðkrÞ; r > b

ζ0nðk2bÞψnðkrÞ; r < b

9
>=

>;

P1
nðcos θÞ
sin θ

3

7
5

ð31Þ

Other components have similar expansions.
Here q¼ Im0 l, where Im0 is the amplitude of the magnetic

current in the dipole and l is the length of the dipole.
Taking into account (31), we expand the total field com-

ponents in each space domain in the similar series with un-
known coefficients.

Namely, in the domain “1” (r < a),

Eð1Þθ ¼
iq sin φ
4πbr

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

�

tðeÞn ψ 0nðk1rÞ
∂P1

nðcos θÞ
∂θ

þ tðmÞn ψnðk1rÞ
P1
nðcos θÞ
sin θ

�

;

ð32Þ

in the domain “2” (a < r < c),

Eð2Þscθ ¼
iq sin φ
4πbr

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

�
�
xðeÞn ψ 0nðk2rÞ þ yðeÞn ζ0nðk2rÞ

�

�
∂P1

nðcos θÞ
∂θ

þ
�
xðmÞn ψnðk2rÞ þ yðmÞn ζnðk2rÞ

�P1
nðcos θÞ
sin θ

�

;

ð33Þ

and in the domain “3” (r > c),

Eð3Þθ ¼
iq sin φ
4πbr

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

�

zðeÞn ζ0nðk0rÞ
∂P1

nðcos θÞ
∂θ

þ zðmÞn ζnðk0rÞ
P1
nðcos θÞ
sin θ

�
ð34Þ

Then, on introducing the notations

f ðθÞ ¼
X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

zðeÞn ζ0nðk0cÞP
1
nðcos θÞ; ð35Þ

gðθÞ ¼ −
X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

zðmÞn ζnðk0cÞP
1
nðcos θÞ ð36Þ

and using the boundary conditions valid on the interval
θ ∈ ½0; θ0Þ, we obtain the following set of two coupled ordi-
nary differential equations:

1
sin θ

f ðθÞ −
d
dθ

gðθÞ ¼ 0; ð37‐aÞ

d
dθ

f ðθÞ −
1

sin θ
gðθÞ ¼ 0 ð37‐bÞ

It is easy to see that

d
dθ

�

sin θ
d
dθ

f ðθÞ
�

−
1

sin θ
f ðθÞ ¼ 0; ð38‐aÞ

gðθÞ ¼ sin θ
d
dθ

f ðθÞ; θ ∈ ½0; θ0Þ ð38‐bÞ

The general solution of Equation (38‐a) for f ðθÞ has the
following form:

f ðθÞ ¼ A1 tanðθ=2Þ þ A2 cotðθ=2Þ ð39Þ

However, as cotðθ=2Þ→ ∞ if θ → 0, which contradicts the
demand of the solution finiteness, we conclude that A2 ≡ 0;
thus, f ðθÞ ¼ A1 tanðθ=2Þ and the index in A can be dropped.
Therefore, finally we find that

f ðθÞ ¼ gðθÞ ¼ A tanðθ=2Þ; θ ∈ ½0; θ0Þ ð40Þ

Coming back to the series representations of the functions
f ðθÞ and gðθÞ, we obtain the equations valid at θ ∈ ½0; θ0Þ,

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

zðeÞn ζ0nðk0cÞP
1
nðcos θÞ ¼ A tanðθ=2Þ; ð41‐aÞ

−
X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

zðmÞn ζnðk0cÞP
1
nðcos θÞ ¼ A tanðθ=2Þ; ð41‐bÞ
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The series equations valid at the interval of θ ∈ ðθ0;π� that
completes the spherical segment θ ∈ ½0; θ0Þ to the full sphere
of the radius r ¼ c can be derived in similar manner by using
the corresponding boundary conditions and observing that the
functions analogous to (40) in this case should be finite if
θ → π. On introducing the notations

dn ¼ ψnðk2bÞζnðk2cÞ; d 0n ¼ ψ 0nðk2bÞζ
0
nðk2cÞ; ð42Þ

we obtain

After algebraic manipulations aimed at bringing together
equations with ‘electrical’ fxðeÞn ; yðeÞn ; z

ðeÞ
n g and ‘magnetic’ co-

efficients, fxðmÞn ; yðmÞn ; zðmÞn g, and exclusion of some of them
using the continuity of the tangential electric field components
across the whole spherical surface r ¼ c, we obtain two
coupled DSEs (44) and (45) in terms of the associated Leg-
endre functions of the first kind, for each of two sets of
‘electric’ and ‘magnetic’ unknowns.

Here, we have also denoted

~zðeÞn ¼ ð2nþ 1Þζnðk0cÞzðeÞn ; ð46Þ

−
X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

n
zðeÞn ζnðk0cÞ −

ffiffiffiffi
ε2
p �

xðeÞn ψn
�
k2c
�
þ yðeÞn ζn

�
k2c
�
þ dn

�o
P1
nðcos θÞ ¼ B cotðθ=2Þ; θ ∈ ðθ0;π�;

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

n
zðmÞn ζ0nðk0cÞ −

ffiffiffiffi
ε2
p �

xðmÞn ψ 0n
�
k2c
�
þ yðmÞn ζ0n

�
k2c
�
þ d 0n

�o
P1
nðcos θÞ ¼ B cotðθ=2Þ; θ ∈ ðθ0;π�

ð43Þ

8
>>>><

>>>>:

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

�
1 − ΔðeÞn

�
~zðeÞn P1

nðcos θÞ ¼ −A2k0c tanðθ=2Þ; θ ∈ ½0; θ0Þ

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

h
− αðeÞn þ ~zðeÞn

i
P1
nðcos θÞ ¼ −B cotðθ=2Þ; θ ∈ ðθ0;π�

ð44Þ

8
>>><

>>>:

X∞

n¼1

1
nðnþ 1Þ

�
1 − ΔðmÞn

�
~zðmÞn P1

nðcos θÞ ¼
−A
2k0c

tanðθ=2Þ; θ ∈ ½0; θ0Þ

X∞

n¼1

ð2nþ 1Þ
nðnþ 1Þ

h
− αðmÞn þ ~zðmÞn

i
P1
nðcos θÞ ¼ −B cotðθ=2Þ; θ ∈ ðθ0;π�

ð45Þ
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~zðmÞn ¼ −ζ0nðk0cÞz
ðmÞ
n ð47Þ

ΔðeÞn ¼ 1þ
2ðk0cÞζ0nðk0cÞ
ð2nþ 1Þζnðk0cÞ

; ð48Þ

ΔðmÞn ¼ 1þ
ð2nþ 1Þζnðk0cÞ
2ðk0cÞζ0nðk0cÞ

; ð49Þ

αðeÞn
ð2nþ 1Þ

¼ −

(
ζ0nðk0cÞ
ζnðk0cÞ

−
ΛðeÞ
ffiffiffiffiε2
p

)−1

½ðdn − ψnðk2cÞζnðk2bÞÞΛðeÞ

þ ψ 0nðk2cÞζnðk2bÞ − ψnðk2bÞζnðk2cÞ�

ð50Þ

αðmÞn ¼

(
ζnðk0cÞ
ζ0nðk0cÞ

þ
ΛðmÞ
ffiffiffiffiε2
p

)−1

½ðψ 0nðk2cÞζ
0
nðk2bÞ − d0nÞΛðmÞ

þ ψ 0nðk2bÞζnðk2cÞ − ψnðk2cÞζ
0
nðk2bÞ�

ð51Þ

ΛðeÞ ¼
ψ 0nðk2cÞA

ðeÞ
n þ ζ0nðk2cÞB

ðeÞ
n

ψnðk2cÞA
ðeÞ
n þ ζnðk2cÞB

ðeÞ
n

; ð52Þ

ΛðmÞ ¼
ψnðk2cÞA

ðmÞ
n þ ζnðk2cÞB

ðmÞ
n

ψ 0nðk2cÞA
ðmÞ
n þ ζ0nðk2cÞB

ðmÞ
n

ð53Þ

AðeÞn ¼
ffiffiffiffiffiffiffiffiffiffiffi
ε1=ε2

p
ψnðk1aÞζ

0
nðk2aÞ − ψ 0nðk1aÞζnðk2aÞ; ð54Þ

BðeÞn ¼ ψnðk2aÞψ
0
nðk1aÞ −

ffiffiffiffiffiffiffiffiffiffiffi
ε1=ε2

p
ψ 0nðk2aÞψnðk1aÞ ð55Þ

AðmÞn ¼ ψnðk1aÞζ
0
nðk2aÞ −

ffiffiffiffiffiffiffiffiffiffiffi
ε1=ε2

p
ψ 0nðk1aÞζnðk2aÞ; ð56Þ

BðmÞn ¼
ffiffiffiffiffiffiffiffiffiffiffi
ε1=ε2

p
ψnðk2aÞψ

0
nðk1aÞ − ψ 0nðk2aÞψnðk1aÞ ð57Þ

Note that Δðe;mÞn → 0 if n→ ∞ or k0c→ 0.
The DSEs (44) and (45) can be further transformed with

the aid of the Abel integral transform (see [15]) for the Leg-
endre associated functions and also the identities

tanðθ=2Þ ¼
2
ffiffiffi
2
p

π
1

sin θ
∫
θ

0

sinðφ=2Þsin φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos φ − cos θ
p dφ; ð58Þ

cotðθ=2Þ ¼
2
ffiffiffi
2
p

π
1

sin θ
∫
π

θ

cosðφ=2Þsin φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θ − cos φ
p dφ ð59Þ

This procedure leads to a new DSE in terms of the trig-
onometric functions.

8
>>>><

>>>>:

X∞

n¼1

�

1 − ΔðeÞn

�

~zðeÞn sin
�

nþ
1
2

�

θ ¼ −2k0cA sin
1
2
θ; θ ∈ ½0; θ0Þ

X∞

n¼1

~zðeÞn − αðeÞn
2nþ 1

cos
�

nþ
1
2

�

θ ¼ B cos
1
2
θ; θ ∈ ðθ0;π�

ð60Þ

8
>>>><

>>>>:

X∞

n¼1

�
1 − ΔðmÞn

�
~zðmÞn

2nþ 1
sin
�

nþ
1
2

�

θ ¼ −
A
k0c

sin
1
2
θ; θ ∈ ½0; θ0Þ

X∞

n¼1

�

~zðmÞn − αðmÞn

�

cos
�

nþ
1
2

�

θ ¼ B cos
1
2
θ; θ ∈ ðθ0;π�

ð61Þ

Now, after differentiation in θ of those equations that
contain the factor 1=ð2nþ 1Þ and application of the inverse
Fourier transform, we obtain two coupled infinite‐matrix
equations,

~zðeÞm −
X∞

n¼1
~zðeÞn ΔðeÞn Rnm ¼ −ð2k0cAþ BÞR0m

þ
X∞

n¼1
αðeÞn
�
δm
n − Rnm

�
; m¼ 1; 2; ::: ð62Þ

~zðmÞm −
X∞

n¼1
~zðmÞn ΔðmÞn Qnm ¼ −

h
Að2k0cÞ

−1
þ B

i
Q0m

þ
X∞

n¼1
αðmÞn

�
δm
n − Qnm

�
; m¼ 1; 2; ::: ð63Þ

2k0cR00A − ð1 − R00ÞB ¼
X∞

n¼1

h
~zðeÞn ΔðeÞn − αðeÞn

i
Rn0; ð64Þ

ð2k0cÞ
−1Q00A − ð1 − Q00ÞB ¼

X∞

n¼1

h
~zðmÞn ΔðmÞn − αðmÞn

i
Qn0; ð65Þ

where Qnmðθ0Þ are the same as (25) and

Rnmðθ0Þ ¼
sinðn − mÞθ0

πðn − mÞ
−
sinðnþmþ 1Þθ0

πðnþmþ 1Þ
ð66Þ

Finally, after exclusion of the constants A and B, the
resulting coupled matrix equations are (m¼ 1; 2; :::)
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~zðeÞm þ
X∞

n¼1

h
Aðe;eÞnm ~zðeÞn þ Aðe;mÞnm ~zðmÞn

i
¼ BðeÞm ;

~zðmÞm þ
X∞

n¼1

h
Aðm;eÞnm ~zðeÞn þ Aðm;mÞnm ~zðmÞn

i
¼ BðmÞm ;

ð67Þ

where

Aðe;eÞnm ¼ ΔðeÞn

�

Rnm −
2Rn0

W
R0mQ00 − 2ðk0cÞ

2R0mð1 − Q00Þ

�

;

ð68Þ

Aðe;mÞnm ¼ ΔðmÞn
2k0c
W

R0mQn0; Aðm;eÞnm ¼ ΔðeÞn
Q0mRn0

2Wk0c
; ð69Þ

Aðm;mÞnm ¼ ΔðmÞn

�

− Qnm þQn0

�

2k0cQ0mR00

−
Q0m
2k0c

R0mð1 − R00Þ

�� ð70Þ

BðeÞm ¼ αe
n
�
δm
n − Rnm

�
þ 2Rn0

h
R0mQ00 − 2ðk0cÞ

2R0mð1 − Q00Þ
i

ð71Þ

BðmÞm ¼ αe
n

h
δm
n − Rnm þ ðWk0cÞ

−1Q0mRn0

i

þQn0α
m
n

h
2k0cQ0mR00 − ð2k0cÞ−1Q0mR0mð1 − R00Þ

i

ð72Þ

W ¼ −2k0cR00ð1 − Q00Þ − ð2k0cÞ−1Q00ð1 − R00Þ ð73Þ

Since
P∞

m;n¼0

�
�Aðs;tÞnm j

2 < ∞; s; t ¼ e;m, (67) is an oper-
ator Fredholm equation of the second kind in the space of
numerical sequences l22 ¼ l2 � l2 (~zðsÞ ∈ l2 for s¼ e;m) under
the condition that fBðsÞm g

∞
m¼0 ∈ l2 for s¼ e;m, which holds

true provided that a < b < c. This guarantees the convergence
of the solutions of (67) with each of the four blocks truncated
to a finite order N to the exact one by the l22‐norm.

In the TMD‐excited antenna modelling, we are interested
in the radiation conductance defined as

G¼ 2�P=jIm0 j
2
; ð74Þ

where the power radiated by the antenna is

�P ¼
� q
4πb

�2 π
Z0

X∞

n¼1

�
2nþ 1

�� �
�zðeÞn j

2
þ
�
�zðmÞn j

2�
ð75Þ

This value is conveniently normalised by the radiation
conductance associated with a dipole in the free space.

G0 ¼ ð6πZ0Þ
−1k20q

2=jIm0 j
2

ð76Þ

The directivity of the antenna is defined by (29), where
correct account of the power radiated in the main‐beam di-
rection yields.

D¼
1

8πZ0
�P

�q
b

�2

�

�
�
�
�
�

X∞

n¼1
ð−iÞn

ð2nþ 1Þ
nðnþ 1Þ

�

iznðeÞ
Pn
1ðcos θÞ
sin θ

þ znðmÞ
dPn

1ðcos θÞ
dθ

���
�
�
�

2

θ ¼ θmax

ð77Þ

Note that for the TMD in the free space the directivity is
the same as for the RED, that is, D0 ¼ 3=2; however, θmax ¼ 0
and 180°.

3 | CONVERGENCE AND ACCURACY
OF THE ALGORITHM

The accuracy of the spherical functions’ calculation can be easily
kept at machine precision. Therefore, the resulting computa-
tional error of our algorithm is determined solely by the matrix
truncation error. The rate of convergence of the algorithm can
be estimated by plotting the normalised computational error,
e(N), in the sense of the l22 norm versus the matrix truncation
number N. The results of such a test are presented in Figure 2.

As one can see, the error decreases rapidly enough to
provide a several‐digit accuracy for the lenses of moderately
large size using small N. For comparison, if one uses an FDTD
algorithm, the number of equations needed for solving the
considered problem with a reasonable accuracy would exceed
many hundred thousands

Our analysis shows that the matrix truncation number
needed to obtain the required numerical accuracy is a function
of the lens parameters, namely its electrical size and the relative
thickness of the shell, and does not depend on the angular
width of the reflector. As we have found, a simple empirical
formula for the truncation number can be derived. For
example, for the relative accuracy of 10−4 in the numerical
solution of the RED‐case equations, the matrix truncation
order should be N ≥ maxfk0c

ffiffiffiffiε2
p

; k0a
ffiffiffiffiε1
p
gþ c=h þ 10. In

the case of the TMD excitation, we have a block‐type 2 � 2
matrix. Then the same rule must be applied to the truncation
of each of the four blocks of this matrix. Therefore, when
computing the dependences of the lens field’s characteristics
on the frequency or other parameters, except the angular size
of the reflector θ0, one has to adapt the truncation number in
line with the mentioned rule.
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4 | PERFORMANCE OF DOUBLE‐
LAYER QUASI‐LUNEBURG LENS FED BY
ON‐AXIS RED WITH REFLECTOR

The classical spherical Luneburg lens has its relative dielectric
permittivity varying as εðrÞ ¼ 2 − ðr=cÞ2, where c is the lens
radius [2]. Discrete Luneburg lenses approximate this depen-
dence in a step‐like manner [5], using a finite number of
spherical shells each having a constant value of permittivity.
The larger the number of shells and the lens radius, the closer
the lens’ behaviour to the GO prediction.

However, in practice it is very difficult and expensive to
manufacture a lens with large number of shells. Therefore,
there is significant interest in the simple double‐shell lenses [8].
We will concentrate our numerical simulations on the case of a
‘quasi‐Luneburg’ double‐layer ILA, that is, the lens with the
inner core having dielectric constant ε1 ¼ 2 and the outer shell
with ε2 ¼ 1:1. The elementary dipole location will be the same
in all the examples, b=c ¼ 0:95.

The results are presented in Figures 3–6. As one can
see, the best directivity is achieved for the core‐shell aspect
value a=c ¼ 0:9. For such a lens, the radiated power
oscillates with the frequency, while the directivity grows
within a linear envelope and the main‐beam angle is close to
180°.

The most striking feature of these plots is the presence
of very intensive and periodic in‐frequency resonances if the
frequency gets larger than some value determined by the
radius and the dielectric constant of the higher‐permittivity
core. In these resonances, the radiation resistance jumps
up; however, the directivity drops to significantly lower
values than the resonances, and the main beam deviates

further from 180°. This is because the resonances are
associated with the whispering‐gallery modes (WGM), whose
fields vary as cos mθ, thus radiating into 2m equally inten-
sive beams. Each time when a WGM is excited, its 2m
identical beams flash up in the radiation pattern, spoiling the
collimation effect of the lens that has the GO, that is, the
broadband and nature.

The examples of the far‐field radiation patterns are shown
in Figure 6. They are the cross‐sections of the rotationally
symmetric ‘hollow‐cone’ patterns because an on‐axis RED
does not excite the field along the axis of symmetry. One can
see that the shape and direction of the main beam depend on
the score‐shell aspect value. The shape and level of the side-
lobes are even more sensitive to this parameter—the smaller
the aspect, the better.

Consider now the frequency dependences of the same
antenna characteristics as before for the different values of the
PEC reflector size, θ0. One can see that the presence of the
reflector leads to enhancement of the resonances (Figure 7).

Even more interesting is the observation that a small
reflector is able to improve the directivity of the small‐size
quasi‐Luneburg lens (see Figure 8).

For example, this improvement can be at 2 times if
k0c ¼ 15, a=c ¼ 0:9 and θ0 ¼ 360, if we consider the envelope
of each dependence. Still, the WGM resonances spoil the
directivity if the lens size is larger than k0c ≈ 12.

4.1 | Effect of dielectric losses

In reality, there are no lossless dielectrics and, moreover, no
ideally smooth spherical shells. Instead, the surface roughness

F I GURE 2 Normalised computational error versus the matrix size for a=c = 0.9, θ0 = 18° and ε2 = 1.3, ε1 ¼ 1 for three values of the normalised frequency
in the case of radial Hertz electric dipole excitation
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F I GURE 3 Normalised power radiated by the on‐axis radial Hertz electric dipole versus the normalised frequency, for several core/shell aspect values in the
quasi‐Luneburg lens with a θ0 ¼ 180 reflector

F I GURE 4 The same as in Figure 3, but for the directivity
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F I GURE 5 The same as in Figures 3 and 4, but for the main beam direction

F I GURE 6 Normalised far‐field radiation patterns for on‐axis radial Hertz electric dipole feeding the quasi‐Luneburg lens with several values of the core/
shell aspect values and θ0 ¼ 180 reflector
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F I GURE 7 Normalised power radiated by on‐axis radial Hertz electric dipole versus the normalised frequency, for several values of the reflector angular
width θ0 and core/shell aspect value a=c¼ 0:9

F I GURE 8 The same as in Figure 9, but for the directivity
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and internal dielectric losses are always present and damp the
resonances.

Figure 10–15 give information on how much the perfor-
mance of the quasi‐Luneburg lens depends on the shell losses.
The WGM resonances are especially sensitive to the losses in
the shell because these modes have the fields concentrated near
the core’s outer surface.

It is seen that, indeed, the effect of smoothing the WGM
resonances takes place. However, the value of the losses should
be optimally selected in order to avoid overall reduction of
directivity–this feature happens to be provided if the losses are
Im ε2 ≈ 0:1. Smaller losses do not suppress very sharp WGM
resonances while greater losses lead to unwanted reduction of
the lens antenna directivity.

In our analysis, we do not study the effect of the surface
roughness. However, introduction of the dielectric losses in the
thin low‐refractive‐index shell of a lens antenna is very similar
to the roughening of the shell surface.

This analogy follows, for instance, from the analysis
of the effect of a periodic corrugation on the modes of
the circular dielectric resonators, published in [22]. As soon
as the period or depth of corrugations becomes close
to the WGM wavelength, its Q‐factor gets spoiled
dramatically.

5 | NUMERICAL RESULTS FOR
DOUBLE‐LAYER DIELECTRIC LENS FED
BY ON‐AXIS TMD WITH REFLECTOR

Unlike the RED, the on‐axis TMD enables one to obtain the
main beam of the considered ILA looking in the forward di-
rection, that is, at θ ¼ 1800. The results of computations are
presented in Figure 16–20, for several values of the core‐shell
aspect ratio and reflector angular width; the dipole location is
fixed as b=c ¼ 0:95.

The frequency scan of the normalised radiation power is
presented in Figure 16. It shows an interplay of the reso-
nance phenomena and the GO beam collimation similar to
the case of the RED‐fed ILA. In particular, the WGM
resonances become the dominating feature as the frequency
is increased.

The frequency scans of the directivities in two main planes
of the antenna are shown in Figures 17 and 18. Comparison of
them with similar plots of directivity of a RED‐fed quasi‐
Luneburg lens (see Figure 4) shows much larger values. This
is because the TMD source has a non‐zero primary field along
the antenna axis, which is in better agreement with the GO
collimation effect. The directivity, however, is destroyed each
time when the frequency of operation hits a WGM resonance.

F I GURE 9 The same as in Figure 8, for the main beam direction
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F I GURE 1 0 Normalised power radiated by on‐axis radial Hertz electric dipole versus normalised frequency for the quasi‐Luneburg lens with the core‐shell
aspect 0.9 and a θ0 ¼ 180 reflector, with and without the losses in the shell

F I GURE 1 1 The same as in Figure 9, but for the directivity
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F I GURE 1 2 Normalised power radiated by on‐axis radial Hertz electric dipole versus normalised frequency, for several core/shell aspect values in the
quasi‐Luneburg lens with and w/o optimal losses

F I GURE 1 3 The same as in Figure 12, however, for the directivity
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F I GURE 1 4 Normalised power radiated by on‐axis radial Hertz electric dipole versus normalised frequency, for several reflector size values in the quasi‐
Luneburg lens with and w/o optimal shell losses

F I GURE 1 5 The same as in Figure 14, but for the directivity
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F I GURE 1 6 Normalised power radiated by on‐axis TMD versus the normalised frequency, for several core/shell aspect values in the quasi‐Luneburg lens
with a θ0 ¼ 180 reflector

F I GURE 1 7 Directivity in the E‐plane, φ¼ 900, versus the normalised frequency for the same quasi‐Luneburg lens configurations as in Figure 16
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F I GURE 1 8 The same as in Figure 17, but in the H‐plane

F I GURE 1 9 Normalised radiated power of the on‐axis tangential Hertz magnetic dipole fed quasi‐Luneburg lens versus the normalised frequency, for
several reflector sizes and core‐shell aspect a=c¼ 0:9
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In Figures 19 and 20, we present similar plots; however,
they are computed for several different values of the reflector
size, θ0.

This is because in the resonance, a flash of the WGM
eigenfield that has many identical beams occurs in the far‐
field pattern. One may anticipate that the ripples in direc-
tivity can be smoothed by the introduction of the losses in
the shell of the quasi‐Luneburg lens, similar to the RED
excitation case.

One may conclude that the small‐reflector configurations
show better directivity although they radiate with somewhat
smaller input resistance.

In Figure 21, we show the normalised far‐field angular
radiation patterns of the studied lens antenna of several electric
sizes. They are combined in pairs so that the left and the right‐
hand parts correspond to one half of the H‐plane and the E‐
plane pattern, respectively. One can see the effect of the lens in
the collimation of the main beam in the forward direction if
the electrical size of the double‐shell quasi‐Luneburg lens gets
larger.

6 | CONCLUSION

The basic equations have been derived and the numerical code
has been developed for reliable and efficient full‐wave

numerical analysis of spherical double‐layer lenses integrated
with a conformal printed disk reflector, backing an RED or
TMD source on the axis of rotation. The method follows [15–
19]; it is based on the analytical regularisation of certain DSEs
and reduces the scattering problem to a Fredholm second‐kind
matrix equation. Note that it is the static limit of the PEC
spherical disk on a homogeneous sphere that is inverted
analytically. After casting each of the problems to the Fred-
holm equations, a numerical solution of a few dozen lambda‐
size lenses takes just seconds on a moderate computer, and the
accuracy is controlled and can be refined as necessary.

Using this efficient and accurate computational instru-
ment, we have studied the performance of the quasi‐
Luneburg ILA where the massive core and the thin shell
have dielectric constants 2 and 1.1, respectively. The primary
source has been considered as either an RED or a TMD
located on the lens axis and backed with a PEC spherical
reflector conformal to the outer surface of the lens shell. Such
ILAs appear to be promising as candidates for the use in the
millimetre‐wave frond‐end applications, although they can
suffer from sharp WGM resonances. To smooth these reso-
nances without significant loss in directivity, one can intro-
duce the losses in the shell layer. In view of the results,
published in [22], it can be expected that the same smooth-
ening effect can be provided by the roughening of the shell’s
inner or outer surface.

F I GURE 2 0 Directivity in the H‐plane, φ¼ 0, versus normalised frequency for the same quasi‐Luneburg lens configurations as in Figure 19
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F I GURE 2 1 Normalized far‐field radiation patterns for the on‐axis tangential Hertz magnetic dipole feeding the quasi‐Luneburg lens with the core‐shell
aspect value a=c¼ 0:9 and the θ0 ¼ 180 reflector. The left (right) hand side of each pattern is for the H‐plane (E‐plane) section
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