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Abstract
Scattering and absorption of the H‐polarized plane wave by the infinite grating of
flat graphene strips are considered in the environment met most frequently—on or
at the surface of a dielectric‐slab substrate. The full‐wave meshless code is based on
the analytical semi‐inversion using the Riemann–Hilbert problem solution. This leads
to a Fredholm second‐kind matrix equation for the Floquet harmonic amplitudes
that guarantees code convergence and provides easy control of computational error,
which can be reduced to machine precision. The matrix elements are combinations
of elementary functions, and therefore, the code is accurate and quite economical.
This enables computation of the reflectance, transmittance, and absorbance as a
function of the frequency in the wide band from static case to 10 THz. Numerical
results show that such a metasurface with micrometre‐sized strips is a composite
periodic open resonator. It is highly frequency‐selective thanks to the interplay of
three types of natural modes—low‐Q slab, moderate‐Q plasmon strip, and ultra‐
high‐Q lattice—that do not exist in the absence of the substrate. Varying the
chemical potential of graphene, one can manipulate the electromagnetic character-
istics of the metasurface at a fixed frequency from almost total transmission to
almost total reflection.

1 | INTRODUCTION

Recent progress in nanotechnologies has drawn broad atten-
tion to graphene as a material that can provide new func-
tionalities to devices and systems that use electromagnetic
waves, especially in the terahertz, infrared, and visible‐light
ranges. This interest is explained by graphene’s good con-
ductivity, which can be tuned with the aid of DC electric
biasing [1–4]. In addition, graphene can support a surface
plasmon‐guided wave with an electric field orthogonal to its
surface in the terahertz and infrared ranges at frequencies two

orders lower than those of the noble metals [5]. These prop-
erties make graphene very promising for designing novel
tuneable antennas, filters, sensors, and absorbers, to mention
just a few possible devices.

Today, the focus of research into the applications of gra-
phene in electronics and photonics has shifted from wide‐area
sheets to patterned configurations in the form of strips, disks,
and other flat forms [6]. One of the most intensively used
configurations is a grating of parallel graphene strips [7–12]. In
principle, graphene strips can be fabricated without substrate
(suspended in air), thus improving their chemical stability [13].

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2021 The Authors. IET Microwaves, Antennas & Propagation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Microw. Antennas Propag. 2021;15:1225–1239. wileyonlinelibrary.com/journal/mia2 - 1225

https://doi.org/10.1049/mia2.12158
https://orcid.org/0000-0003-3119-8315
https://orcid.org/0000-0002-0639-988X
mailto:fedir.yevtushenko@gmail.com
mailto:dukh.sergey@gmail.com
mailto:tzinenko@yahoo.com
mailto:yuriy.rapoport@gmail.com
https://orcid.org/0000-0003-3119-8315
https://orcid.org/0000-0002-0639-988X
http://wileyonlinelibrary.com/journal/mia2


_Patterned graphene configurations are typically located,
however, on the surface of flat dielectric substrates. For
instance, chemical vapour deposition (CVD) technology can
produce a controlled number of high‐quality graphene mono-
layers on a large area of high‐refractive‐index substrate. It was
used in [10] to manufacture double‐layer gratings of nanosize‐
width CVD‐graphene strips on a substrate of polished float‐
zone silicon for infrared sensing. To pattern strips from the
graphene sheet, 100‐keV electron beam lithography and etching
in oxygen plasma were applied.

Still, the technologies mentioned above are expensive. To
reduce the cost and time of research and development, sci-
entists have used the preceding modelling of the electromag-
netic properties of patterned graphene. Of crucial importance
here is the availability of the surface conductivity of non‐
patterned zero‐thickness graphene in analytical form, known
as the Drude model or the more sophisticated Kubo
formalism [5]. Still, several aspects are non‐trivial for accurate
modelling and must fully account for Graphene’s extremely
thinness (1–2 nm) and finite and frequency‐dependent con-
ductivity as well as the presence of sharp edges, dielectric
substrates, and superstrates. Comparative reviews of tech-
niques employed for such modelling can be found in [14, 15]
together with discussions of their limitations. In particular, it
should be emphasized that the Fourier expansion technique
(also known as ‘rigorous coupled‐wave analysis’) is divergent in
the H‐polarization case [14], while commercial codes require
the introduction of a nanoscale thickness of graphene that
entails unnecessarily fine meshing and prohibitively long
computation time [15]. Two analytical‐numerical approaches
stand out in this area: the method of singular integral equations
(SIEs) solved using the Nystrom discretizations [16, 17] and
the method of analytical regularization (MAR) applied to either
SIE or other equivalent equations, casting them to Fredholm
second‐kind matrix equations [18–21].

The aim of our work is twofold. First, we would like to adapt
theMARversion, which is based on the analytical solution of the
Riemann–Hilbert problem (RHP) in complex calculus, to the
analysis of wave scattering and absorption by an infinite grating
of flat graphene strips lying on a flat dielectric‐slab substrate.
This MAR‐RHP technique was developed earlier to analyze
scattering from zero‐thickness perfectly electrically conducting
(PEC) on‐substrate strip grating [22–24]. Its modification for
graphene strips has not been done so far and is expected to
outperform other techniques, including existing MAR‐based
techniques. The latter use SIEs in the spatial or Fourier‐

transform domain solved with the Galerkin method‐of‐
moments with judiciously selected expansion functions
(namely, weighted Chebyshev polynomials) [14, 21]. They are
available only for graphene‐strip gratings embedded in a layer of
dielectric. In contrast, our MAR‐RHP technique is equally
applicable to embedded and on‐surface configurations; it also
has a great advantage in not needing numerical integrations to fill
in the matrix equation.

Second, with the aid of such a trusted and efficient instru-
ment, we aim to systematically research the resonance effects in
the scattering and absorption of the terahertz waves by on‐
substrate graphene‐strip gratings. Here, we focus our research
on the so‐called lattice‐mode resonances, which do not exist on
suspended graphene‐strip gratings. They have been frequently
overlooked or neglected earlier but became exposed recently
[14, 21]. The lattice modes are specific natural modes of the
gratings as periodic open resonators; they were first reported in
[25] and then largely forgotten. However, they have attracted
increasingly greater attention in recent times [19, 26–33]. This is
because, in theory, they may have (for infinite gratings) various
high‐Q factors—for instance, if the substrate becomes thinner.
The other natural modes of our composite scatterer, namely the
plasmonmodes of the strips and the slabmodes of the substrate,
do not have such a property. As noted in [14, 21], accurate
quantification of such fine resonances appears to be possible
only with the aid of truly sophisticated codes based on either
MAR or SIE‐Nystrom techniques.

In our work, we study only H‐polarized plane wave scat-
tering and absorption because in the case of E‐polarization,
plasmon‐mode resonances do not exist. In the numerical ex-
periments, we select the strip width, grating period, and sub-
strate thickness in dozens of micrometres. This places the
frequencies of the substrate, plasmon, and lattice modes in the
terahertz range.

2 | PROBLEM FORMULATION

We consider an infinite flat grating of zero‐thickness graphene
strips, located in the plane y ¼ 0 with period р, as shown in
Figure 1. This plane is the upper surface of a homogeneous
dielectric layer (substrate) of thickness h and relative dielectric
permittivity ε. The graphene strips are assumed infinite along
the z‐axis and have the width d. The H‐polarized plane wave is
incident at the angle α with respect to the x‐axis and depends
on time as e−iωt.

F I GURE 1 Infinite flat graphene‐strip grating
laying on a dielectric substrate and illuminated by a
plane H‐polarized wave (a) and cross‐sectional
geometry and notations used (b)
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In the case of the H‐polarization, the field components are
ðEx;Ey; 0Þ and ð0; 0;HzÞ. It is convenient to choose Hz as the
‘basic’ component; we denote it Uðx; yÞ.

Then the incident field is a plane wave,

Uinðx; yÞ ¼ eik0ðcos αx−sin αyÞ; y > 0; ð1Þ

where k0 ¼ ω=c ¼ ωðε0μ0Þ
1=2 with c being light velocity. The

entire field is decomposed into a sum, Utot ¼Uin þUð1Þ in
domain #1 and Utot ¼Uð2;3Þ in domains #2 and #3. Thus, we
obtain the following boundary value problem for determining
the function U ¼UðjÞ; j ¼ 1; 2; 3:

(I) it must satisfy the 2‐D Helmholtz equation everywhere
outside the strips and the slab interfaces:
�

∇2 þ k20ε
ðjÞ
�
UðjÞð r!Þ ¼ 0; y ≠ 0; y ≠ −h; j ¼ 1; 2; 3;

ð2Þ

where we imply εð1Þ ¼ εð3Þ ¼ 1; εð2Þ ¼ ε.

(II) resistive boundary conditions at the graphene strips on
the upper interface, which is at r! ∈ M : fy¼ 0;

jx þ npj < d=2; n¼ 0;�1;�2; :::g, namely,

1
ik0

∂
∂y

�

Uinðx; yÞ þUð1Þðx; yÞ þ
1
ε
Uð2Þðx; yÞ

��
�
�
�
y¼0

¼ −2Z
�
Uinðx; 0Þ þUð1Þðx; 0Þ − Uð2Þðx; 0Þ

�
; ð3‐aÞ

∂
∂y

�

Uinðx; yÞ þUð1Þðx; yÞ −
1
ε
Uð2Þðx; yÞ

��
�
�
�
y¼0
¼ 0; ð3‐bÞ

and transparent boundary conditions at the slots, which are
at r!∈ S : fy¼ 0; −∞ < x < þ∞gnM ,

Uð1Þðx; 0Þ þUinðx; 0Þ ¼Uð2Þðx; 0Þ; ð4‐aÞ

∂
∂y

�

Uinðx; yÞ þUð1Þðx; yÞ −
1
ε
Uð2Þðx; yÞ

��
�
�
�
y¼0
¼ 0; ð4‐bÞ

and similar conditions at the entire lower interface, y = ‒ h,
−∞ < x < þ∞,

Uð2Þðx;−hÞ ¼Uð3Þðx;−hÞ; ð5‐aÞ

∂
∂y

�
1
ε
Uð2Þðx; yÞ − Uð3Þðx; yÞ

��
�
�
�
y¼−h
¼ 0; ð5‐bÞ

(III) the radiation condition, which means that at y→�∞,
the scattered field must contain only the ‘outgoing’
waves, and

(IV) the condition of local finiteness of power: the power
stored in any finite space domain D tends to zero if
D→ 0; this condition determines the edge behaviour of
the function U: it must tend to zero as a square root of
the distance to the strip edges.

Conditions (I)–(IV) provide the uniqueness of the solution:
if the function U exists, then it is unique. Additionally, the
periodicity of the domain M, together with the shape of (1),
entails the quasi‐periodicity property,

Uðxþ p; yÞ ¼ e−ik0p cos αUðx; yÞ; ð6Þ

which enables the reduction of the analysis to a single period of
the scatterer.

3 | DUAL SERIES EQUATION

The quasi‐periodicity property (6) allows expansion of the
unknown field in terms of the Floquet series in each of the
domains #1, #2, and #3. On introducing the dimensionless
notations,

ϕ¼ 2πx=p; ψ ¼ 2πy=p; θ ¼ πd=p;
ξ¼ 2πh=p; κ ¼ p=λ;

ð7Þ

we can write these expansions as follows: in the upper half‐
space,

Uð1Þðϕ;ψÞ ¼
Xþ∞

n¼−∞
aneiðγnψþβnϕÞ; ψ > 0; ð8Þ

in the dielectric substrate (domain #2),

Uð2Þðϕ;ψÞ ¼
Xþ∞

n¼−∞

�
bneiγ

sl
nψ þ cne−iγslnψ

�
eiβnϕ; 0 > ψ > −ξ;

ð9Þ

and in the lower half‐space (domain #3),

Uð3Þðϕ;ψÞ ¼
Xþ∞

n¼−∞
dneið−γnψþβnϕÞ; ψ < −ξ; ð10Þ

where unknown coefficients an; bn; cn; dn are the amplitudes
of the Floquet harmonics, and other notations are

γn ¼
�
κ2 − β2

n
�1=2

; γsln ¼
�
κ2ε − β2

n
�1=2

; βn ¼ n − β0;

γ0 ¼ κ sin α; β0 ¼ κ cos α;
ð11Þ

The reflectance and transmittance are the power fractions
taken from the slab with grating to the upper and lower half‐
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space, respectively. They are expressed via the Floquet har-
monic amplitudes as

Pref ¼ γ0
−1

X

jn−κ cos βj<κ

γnjanj
2
;

Ptr ¼ γ0
−1

X

jn−κ cos βj<κ

γnjdnj
2
:

ð12Þ

The power absorbed in the metasurface can be found
directly, as in [14, 21], or using the power conservation law,

Pabs ¼ 1 − Pref − Ptr ð13Þ

Substituting (9)–(10) into the conditions of (5), we obtain

Since these series coincide over the entire period, we
replace them with termwise equations and express the un-
knowns bn and cn in terms of dn:

bn ¼
1
2
dneiγnξ

�

1 −
ε
γsln

γn

�

eiγ
sl
nξ;

cn ¼
1
2
dneiγnξ

�

1þ
ε
γsln

γn

�

e−iγslnξ
ð15Þ

According to graphene conditions (3‐a) and (3‐b) at the
strips, for jϕj < θ,

1
κ

 

− κ sin αeiβ0ϕ þ
X∞

n¼−∞
anγneiβnϕ þ

1
ε

X∞

n¼−∞

�
γslnbn − γslncn

�
eiβnϕ

!

¼ 2Z
�
P∞

n¼−∞

�
bn þ cn

�
eiβnϕ

−eiβ0ϕ −
P∞

n¼−∞
aneiβnϕ

�

;

ð16Þ

−κ sin αeiβ0ϕ þ
X∞

n¼−∞
anγne

iβnϕ ¼
1
ε

X∞

n¼−∞

�
γslnbn − γslncn

�
eiβnϕ

ð17Þ

at the slots, r!∈ S, conditions (4‐a) and (4‐b) yield, for
θ < jϕj < π,

eiβ0ϕ þ
X∞

n¼−∞
aneiβnϕ ¼

X∞

n¼−∞

�
bn þ cn

�
eiβnϕ ð18Þ

−κ sin αeiβ0ϕ þ
X∞

n¼−∞
anγne

iβnϕ

¼
1
ε

X∞

n¼−∞

�
γslnbn − γslncn

�
eiβnϕ

ð19Þ

Thanks to (3‐b) and (4‐b), Equation (17) is satisfied over
the entire period. Therefore, on substituting bn and cn from
(15) and introducing new coefficients (n = 0,±1,…),

xn ¼
�

−δn;0κ sin αþ γnan
�
ðΓnÞ

−1
þ 2δn;0; ð20Þ

Γn ¼

"
1
γn

−
ε
γsln

�
γsln − γnε

�
e2iγslnξ þ

�
γsln þ γnε

�

�
γsln − γnε

�
e2iγslnξ −

�
γsln þ γnε

�

#−1

; ð21Þ

we arrive at the expression that links dn and xn:

dn ¼
�
xn − 2δn;0

�
Γnεeiγnξ

h
iγsln sin

�
γslnξ
�
þ γnε cos

�
γslnξ
�i−1

:

ð22Þ

Note that if jnj→ ∞, the weight function in (21) behaves as

Γn ¼
ijnj
1þ ε

�

1þO
�κ cos α
jnj

�
þO

�
κ2

n2

�

þO
�
e−jnj2πh=p

��

ð23Þ

4 | REGULARIZATION OF DUAL
SERIES EQUATION

To achieve analytical regularization, we introduce the function

Δnðκ; ε; h=p; α;ZÞ ¼ jnj þ ið1þ εÞΓn þ ið1þ εÞκZ ð24Þ

and using the expressions (16)–(22), the following is the dual
series equation (DSE) for the unknown coefficients, xn:

8
>>><

>>>:

X∞

n¼−∞

�
bne−iγslnξ þ cneiγ

sl
nξ
�
eiβnϕ ¼

X∞

n¼−∞
dneiγnξeiβnϕ

1
ε

X∞

n¼−∞

�
iγslnbne

−iγslnξ − iγslncne
iγslnξ
�
eiβnϕ ¼

X∞

n¼−∞
−iγndneiγnξeiβnϕ

X∞

n¼−∞
−iγndneiγnhþiβnϕ

ð14Þ
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8
><

>:

X∞

n¼−∞
xnjnjeinϕ ¼

X∞

n¼−∞
xnΔneinϕ − ið1þ εÞ2Г0; θ <

�
�ϕ
�
� ≤ π;

X∞

n¼−∞
xneinϕ ¼ 0;

�
�ϕ
�
� < θ;

ð25Þ

It can be verified that if all Δn ¼ 0, then (25) forms the RHP
on an arc of the unit circle in the complex plane. This problem
has an analytical solution expressed via the Plemelj–Sokhotski
formulas, as explained, for instance, in [18, 22, 23]. Note that
when building this solution, the edge condition (IV) is used
explicitly. If this procedure is applied to the full DSE (25), it
yields an infinite matrix equation,

xm ¼
X∞

n¼−∞
Am nxn þ Bm;m¼ 0;�1;�2;…; ð26Þ

Am n ¼ ΔnTmnðθÞ;Bm ¼ −ið1þ εÞ2Г0Tm0ðθÞ; ð27Þ

here, the functions TmnðθÞ are expressed via the Legendre
polynomials Pm of the argument u¼ −cos θ (see [18, 23]),
namely,

TmnðθÞ ¼
ð−1Þmþn

2ðm − nÞ
½PmðuÞPn−1ðuÞ − Pm−1ðuÞPnðuÞ�;m ≠ n;

ð28Þ

T 00ðθÞ ¼ −ln
1
2
ð1þ cos θÞ; ð29Þ

TmmðθÞ ¼
1

2jmj

"

1þ
Xjmj

s¼1
tsðuÞPs−1ðuÞ

#

;m ≠ 0; ð30Þ

where t0 ¼ 1, t1ðuÞ ¼ −u, and tsðuÞ ¼ PsðuÞ − 2uPs−1ðuÞþ
Ps−2ðuÞ.

The large‐index asymptotics of the Legendre polynomials
enable one to see that the following infinite sums are bounded:

Xþ∞

m;n¼−∞
jAmnj

2 < ∞;
Xþ∞

m¼−∞
jBmj2 < ∞ ð31Þ

This is exactly what is needed to state that Equation (26) is
a Fredholm second‐kind matrix equation in the space of
number sequences l2. Hence, the convergence of its numerical
solution for progressively larger truncation numbers N is
mathematically guaranteed.

In [22], the inverted part of DSE was slightly different:
namely, it involved the weight jnj þ const instead of jnj in (25).
This provided slightly faster convergence; however, it led to the
Legendre functions of a complex‐valued frequency‐dependent
index. In contrast, expressions (27) are combinations of
elementary functions. In addition, they need no numerical

integrations and hence can be easily computed with machine
precision. This is an important advantage with respect to the
other MAR‐like techniques, such as MAR‐Galerkin in the
spatial or Fourier‐transform domains [9, 12, 14, 19–21].

Inspection of (23), (24), and (27) shows that both Δn and
Am n contain the terms proportional to the normalized fre-
quency, κ ¼ p=λ, and the terms proportional to e−jnj2πh=p. This
means that the regularization, which is the semi‐inversion of
DSE, is performed via the analytical inversion of the static limit
of the part corresponding to the strip grating on the interface
between two media, air and dielectric. As a result, both the
existence of the finite substrate thickness and finite conductivity
of strips must shift the ‘threshold’ value of the matrix trunca-
tion number, after which the error starts descending to larger
values than in the case of suspended PEC strips:
Nth ≈ κ½1 þ hε1=2=p þ ð1 þ εÞ

�
�Z
�
��.

5 | CONVERGENCE AND VALIDATION

To visualize the rate of convergence of the numerical solution,
we compute the relative error, in the l2‐norm, of the solution
found with varying truncation order N compared with
N = 400 and defined as follows:

exðNÞ

¼

 
X400

n¼−400

�
�xNn − x400n

�
�2
!1=2 

X400

n¼−400

�
�x400n

�
�2
!−1=2

ð32Þ

The results in Figure 2a correspond to the normal and in-
clined incidence, α¼ 90o and 45°, on the grating with
p¼ 70 μm; d ¼ 14 μm; h¼ 10 μm placed on the substrate
with relative dielectric permittivity values ε¼ 2:25; 5; and 12;
the frequency is 5 THz, which means κ ¼ 1:16. The graphene
parameters are T ¼ 300K, μc ¼ 0:39 eV, and τ ¼ 1 ps, which
results in the relative surface impedance Z ¼ 0:06 − i1:81.

This value can be considered the near‐field error. As
shown in Figure 2a, it begins nearly exponential decay as soon
as N becomes larger than Nth ≈ 20 − 30, as explained in the
previous section. In the analysis of plane wave scattering from
gratings, normally the phenomena of reflection, transmission,
and absorption in terms of power fractions are of primary
interest. Therefore, we define and compute the far‐field error
as a function of N,

ePðNÞ ¼ jPN − P400j=P400; ð33Þ

where P is transmittance, reflectance, or absorbance; see (12).
As seen in Figure 2b, with an increase in N over Nth, the

error (33) starts decreasing similarly to near‐field error; how-
ever, the value of that error is one to two orders smaller than
for (32). As shown, the rate of convergence is the highest in the
case of absence of the dielectric layer and normal incidence,
while thinner and optically denser slabs entail larger values of
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N to achieve the same accuracy. In contrast, the filling factor,
d=p, does not change Nth or the rate of convergence.

Finally, as proof of validation, in Figure 3 we present a
comparison of our results with those in fig. 3a of [34],
computed by a conventional MoM code and a MAR‐Galerkin
with only one weighted Chebyshev polynomial approximating
the strip current. Here, the absolute value of the zeroth‐order
Floquet harmonic is shown versus the filling factor, d/p, at the

normalized frequency κ ¼ 0:5 for resistive‐strip grating with
Z¼ 100 Ohm on dielectric substrate with ε¼ 2 and 4 and
h¼ p=5 illuminated by the H‐polarized plane wave incident at
α¼ 60o. The PEC‐strip case (Z = 0) is also shown for com-
parison. The corresponding curves visually overlap; the small
discrepancy from MAR‐Galerkin is explained by the low order
of the latter and vanishes if d=p ≤ 0:3.

6 | RAYLEIGH ANOMALIES AND
NATURAL MODES

6.1 | Rayleigh anomalies

Rayleigh anomalies (RAs) are associated with the branch points
of the field U as a function of the frequency at γm ¼ 0; the
existence of these branch points is the consequence of our
assumption that the grating is infinite and the use of the
Floquet series (8) and (10). Note that the frequencies at which
γslm ¼ 0 are not the branch points. Thus, in terms of the fre-
quency f ¼ ω=2π, RAs are given by the following equations:

f RA�m ¼
cmp−1

1� cos α
;m¼ 1; 2;… ð34Þ

If all periods of the grating are in the same phase, as at the
normal incidence, the ±m‐th RA frequencies coalesce and
correspond to the period being divisible by the free‐space
wavelength,

f RA�m ¼ cm=p;m¼ 1; 2;… ð35Þ

F I GURE 2 (a) The error in the computation of the Floquet harmonic amplitudes using (26)–(30) versus the matrix truncation order for the grating with
parameters indicated in the inset. (b) The error in the computation of the reflectance. The frequency is f ¼ 5 THz , and the graphene impedance is
Z¼ 0:06 − i1:81

F I GURE 3 Comparison of the results of figure. 3a of [34] and MAR‐
RHP using (26)–(30). Reflectance of resistive‐strip grating with
Z¼ 100 Ohm on dielectric substrate versus the ratio d/p at κ ¼ 0:5,
h=p¼ 0:2, and ε ¼ 2 and 4. The plots for the PEC strip array in the free space
and on the same substrate are also shown
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Note that the RA frequencies do not depend on the fine
structure of the period of the grating.

6.2 | Substrate modes

In the absence of strips, the dielectric‐slab substrate is the
simplest 1‐D open resonator, sometimes called the ‘Fabry–
Perot etalon’. Its natural modes Sm have complex‐valued fre-
quencies that are asymptotically given by the expressions
found, for instance, in [35],

f Sm ≈ cm
.�

hε1=2
�
;m¼ 1; 2;… ð36Þ

The Q‐factors of the slab modes are low, QS
m ≈ 10. If the

substrate is equipped with strips, the slab‐mode frequencies
shift in the complex plane; however, they do not disappear.

6.3 | Plasmon modes of the strips

As mentioned in the introduction, in the H‐polarization
regime, the grating of graphene strips demonstrates the reso-
nances associated with the plasmon modes of each strip, Pm.
Graphene’s surface impedance is the sum

Zðω;μc; τ;TÞZ0 ¼ 1=ðσintra þ σinterÞ; ð37Þ

where σintra and σinter are the intraband (also known as the
Drude term) and interband parts of the surface conductivity,
respectively [5]. They are found from the Kubo formalism as

σintra ¼
C

ωþ iτ−1;C ¼
iq2e kBT
πℏ2

"
μc
kBT
þ 2 ln

 

1þ e− μc
kBT

!#

;

ð38Þ

σinter ¼
iq2e
4πℏ

ln
2jμcj − ðωþ iτ−1Þℏ
2jμcj þ ðωþ iτ−1Þℏ

; ð39Þ

where qe is the electron charge, kB is the Boltzmann constant, T
is the temperature, ℏ is the reduced Planck constant, τ is the
electron relaxation time, and μc is the chemical potential. Note
that at the frequencies up to the visible range, jσintraj > >jσinterj,
and therefore,

ZðωÞ ≈ ðZ0σintraÞ
−1
¼ ð1=τ − iωÞ=ðZ0CÞ; ð40Þ

Natural plasmon modes of a graphene strip are usually
viewed as the modes of the surface‐wave Fabry–Perot reso-
nator. Then, the empirical characteristic equation for such
modes is

sin
�
gplasd þ η

�
≈ 0; ð41Þ

where gplas is the wave number (propagation constant) of the
plasmon‐guided wave of infinite sheet of graphene located on
the interface between dielectric and air and η is the phase of the
reflection coefficient of that wave from the strip edge (here, we
assume that the absolute value of the reflection coefficient
equals 1). According to [36], if

�
�Z2�� > >1, then the wave

number of the plasmon‐guided wave is

g2plas ≈ k2ð1þ εÞ
�
1
2

− Z2
ð1þ εÞ

�

þO
� �
�Zj−2�

: ð42Þ

and the best fit with the first‐order plasmon mode is obtained
when η¼ π=4.

Substituting (40) and (42) into (41) and neglecting the
terms other than the leading one, we conclude that the natural
frequencies of the plasmon modes Pm of the graphene strip are
given by

f Pm ≈
�
cZ0Cðπm − ψÞ

dð1þ εÞ

�1=2

;m¼ 1; 2;…; ð44Þ

As visible from (44), these frequencies are inverse‐
proportional to the square root of the strip width, d, and
proportional to the mode index, m. They also scale as the
square root of the graphene chemical potential. Therefore, one
can manipulate them by changing the DC bias. The Q‐factors
of the plasmon modes are between 10 and 100 and depend
mainly on the relaxation time, τ.

6.4 | Lattice modes of periodic open
resonator

In addition to the dielectric‐slab and graphene‐strip modes,
our metasurface possesses specific ‘collective’ modes that
appear because of periodicity; these are the lattice modes
(also called grating modes [28], Lmn. These mode resonances
have been analysed for the PEC‐strip‐on‐substrate grating in
[23, 24] and the graphene‐strip gratings inside a slab in
[14, 21]. Here, the index m corresponds to the ‘parent’ RA
(35) because their complex frequencies tend to the latter if
the slab thickness shrinks to zero. Still, at any finite thickness,
they are shifted in the main term by the frequency‐dependent
factor gHn =k0 > 1,

f HL
�mn ≈

cmk0
�
pgHn
�−1

1 ± cos α
;m¼ 1; 2;…; n¼ 0; 1; 2;… ð45Þ

Here, gHn is the wave number of the n‐th guided waveTMn of
the bare dielectric slab [37]. Note that as the RA frequencies are
purely real‐valued, the lattice‐mode Q‐factors are controlled by
the slab thickness—mainly, QHL

mn ¼Oðm−1p4=h4Þ—so that if
the slab vanishes, all QHL

mn turn to infinity. However, it is
known that the Poynting theorem prohibits purely real‐valued
frequencies of natural modes of open resonators [38]. Indeed,
in the limit, the complex poles of lattice modes fall into the
wolf‐pits of RA branch points and thus vanish.
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Today, it clear that the lattice‐mode resonances are
responsible for many remarkable phenomena explained earlier
from different points of view. Among them, besides those
mentioned in the introduction, there are the ‘large phased‐array
scan blindness effect’ [39–41], ‘anomalous antenna Q‐factors’
[42], and ‘guided‐mode resonance’ [43].

7 | NUMERICAL RESULTS: INTERPLAY
OF RESONANCES

In the computations, we follow [14, 21] and assume the
following graphene parameters: temperature T ¼ 300K,
chemical potential μc ¼ 0:39 eV, and electron relaxation
τ ¼ 1 ps. The latter value is somewhat overoptimistic, as the
best CVD‐graphene samples available today have twice the
smaller value of relaxation time; we have selected it to empha-
size the plasmon resonances. At the end of this section, we
address the tuneability of these resonances with the aid of the
potential μc.

In Figure 4a, the plots of the reflectance (12) versus the
frequency presented are in the range from 0 to 10 THz at the
normal incidence of the H‐polarized plane wave on a grating
of graphene strips with a rather small filling factor, d=p¼ 0:2,
in the free space and on a rather thin substrate with h=p¼ 1=7
and relative permittivity values 2.25 and 4.2.

The plots in Figure 4b show similar dependences of the
absorbance for the same parameters. We do not show the plots
for the transmittance because Ptr ¼ 1 − Pref − Pabs.

Note that the RA frequencies, which correspond to κ ¼ 1
and 2, are found to be 4.286 THz and 8.571 THz, respectively.
In addition, one can see several peaks and Fano‐shaped double
extremums of the reflectance and absorbance. They corre-
spond to the natural modes of our metasurface denoted as in
Section 3. The zoomed‐up spectra on panels (b) and (c) show
better resolution of the narrow ranges containing sharp peaks
on the high‐Q lattice modes L10 and L20.

In addition, the spectra in Figure 4a,b reveal medium‐Q
resonances on the plasmon modes P1, P3, and P5. At normal
incidence, the plasmon modes with even indices remain ‘dark
modes’; they are not excited because their eigenfields are
orthogonal in symmetry to the plane wave. Note that if
ε¼ 4:2, the lattice mode L10 hybridizes with the plasmon
mode P3 around 4.03 THz.

The resonance on the principal plasmon mode P1 domi-
nates at the frequencies lower than the first RA. Its presence
ruins the so‐called Hertz effect of the good transparency, in the
H‐polarization regime, of gratings made of wires or strips that
conduct well and are placed with periods smaller than the
wavelength; note that the same takes place for the noble‐metal
gratings in the visible range [28]. However, enhanced reflection
is accompanied by sizeable absorption.

Below 0.5 THz (this value depends on ε and μc), the on‐
substrate graphene‐strip grating withd ¼ 14 μm wide strips
displays rather good polarization discrimination in Hertz sense.
The exact position of the principal plasmon resonance P1

depends on the strip width in accord with (44), which opens up
opportunities to design tuneable sub‐THz polarizers.

Panels (b) and (c) demonstrate that if the optical contrast
of the substrate and the host medium becomes smaller (the
same happens if the substrate becomes thinner), then the
lattice‐mode peaks of high reflection and absorption move
closer to the RA frequencies, and their Q‐factors become
larger. The distance from RA is mediated by the principal
guided wave TM0 of the dielectric slab in accord with (45).

Finally, we would like to draw the reader’s attention to
the wide bell‐like resonances in Figure 4a, which are absent
in Figure 4b, at 4.1 THz for ε¼ 4:2 and 5.0 THz for
ε¼ 2:25. These are the slab‐mode resonances. They do not
show up in the absorbance because here, the slab is
assumed lossless.

The identification presented above of the natural modes
responsible for the resonances in THz wave scattering and
absorption by the considered metasurface is supported by the
near‐field portraits presented in Figures 5 to 7. Namely, in
Figure 5a,b one can see the standing waves along the grating
formed by the ±1st Floquet harmonics and in Figure 5c,d by
the ±2nd ones [14, 28]. In Figure 6, the plasmon‐mode fields
stick to the strips similarly to [16], while in Figure 7, the slab‐
mode fields, independent on x, are only slightly perturbed by
the presence of the strips.

The next series of results demonstrates what happens to
the frequency dependences of reflectance and absorbance if
the angle of the plane wave incidence starts deviating from
normal. Plots in Figure 8 correspond to the on‐substrate
grating with period p¼ 70 μm made of narrow graphene
strips with d ¼ 7 μm and those in Figure 9—to the grating of
the same period made of wide strips with d ¼ 63 μm. Other
parameters of the substrate and graphene are the same as in
Figure 4.

If the strips are narrow (Figure 8), then for this combi-
nation of parameters at the normal incidence there is a broad
slab‐mode resonance S1 at around 5 THz, on the red slope of
which there is a principal plasmon‐mode resonance P1 at
3.855 THz and on the blue slope–the next P3 mode resonance,
which is much weaker. Double RA of the orders ±1 is at 4.
286 THz. Slightly red‐shifted from this RA is the sharp lattice‐
mode resonance L10 and its higher‐order sister L20 is seen at
7.746 THz. As soon as the angle of incidence departs from
normal, double RA splits into two separate ones for the ‐1st
and +1st Floquet harmonics.

Each of them is accompanied by the corresponding lattice‐
mode resonance on the red side. Note that the negative‐index
RA is accompanied by resonances on the L‐mn modes that
remained ‘dark’ at the normal incidence because their field
symmetry was orthogonal to the plane wave. Note that both
plasmon‐mode and slab‐mode resonances remain intact so that
off the lattice‐mode frequencies, all curves overlap.

If the strips are wide (the grating is a sheet of graphene
with narrow slots) as in Figure 9, then at the normal incidence,
the slab‐mode resonance is blue‐shifted to 6 THz while the
principal plasmon P1 is red‐shifted to 1 THz.
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F I GURE 4 The reflectances (a), (c), (d) and absorbances (b), (e), (f) of the free‐standing and on‐substrate gratings with period p¼ 70 μm, d=p¼ 0:2,
and h=p¼ 1=7 versus the frequency for three values of the permittivity, ε¼ 1, 2.25, and 4.2 (a), and zooms of (a) and (b) near the L10 (c), (e) and the L20 (d),
(f) mode resonances
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In this case, a departure of the angle of incidence from the
normal entails the appearance of split resonances on the lattice
modes L±10 and L±20, less intensive than on the narrow‐strip
grating. In addition, even‐index plasmon modes P2, P4 etc.
become visible, at least on the plots of absorbance.

As the DC tuneability of conductivity is graphene’s most
important characteristic for application features, we have
computed the THz spectra of the reflectance, transmittance,
and absorbance for various values of the chemical potential, μc.
These dependencies are shown in Figure 10a,b,c.

As one can see, larger chemical potentials shift the
plasmon‐mode resonances to the blue and their peak values
become somewhat smaller. This shift eventually yields, at
μc ¼ 1:5 eV (see panel (d)), the situation where the real
values of the complex natural frequencies of the medium‐Q
mode P1 and the high‐Q mode L10 coincide. In this situa-
tion, the broad peak of high (75%) reflection because of the

plasmon mode becomes cut through by a narrower band of
low (12%) reflection. In this band, the absorbance also drops
to 0.1%, so that the transmittance exceeds 87%. Sometimes
such an effect is called electromagnetically induced trans‐
parency. As a result of this effect, by varying the graphene
chemical potential, one can change the transmittance/
reflectance ratio of the H‐polarized THz plane wave, which
is the metasurface transparency, within a large dynamic
range.

8 | CONCLUSIONS

In this work, we adapted the MAR technique based on the
analytical solution of the RHP to the form suitable for accurate
and efficient electromagnetic analysis of themetasurfacemade of
graphene‐strip grating on a dielectric substrate. The developed

F I GURE 5 The magnetic field patterns for four periods in the resonances on the lattice modes L10 and L20 at the normal incidence for the same grating as
in Figure 4 with ε¼ 2:25: (a) f ¼ 4:165 THz (c) f ¼ 7:746 THz; and with ε¼ 4:2: (b) f ¼ 4:036 THz and (d) f ¼ 6:739 THz
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numerical code is meshless, has a guaranteed convergence, and
does not involve any numerical integrations. Using this fast and
trusted numerical instrument, we have studied the interplay over
the whole THz range of the resonances in plane wave scattering
and absorption caused by three types of H‐polarized natural
modes. Two are well‐known low‐Q slab modes of the substrate
and moderate‐Qplasmonmodes of the graphene strips. Besides
those, the considered composite metasurface possesses ultra‐
high‐Q lattice modes of various orders. The existence of these
modes is the consequence of two factors: periodicity and pres-
ence of the substrate. This can be seen in the fact that their fre-
quencies are tied to the RA frequencies but are shifted from them
by the factors determinedby thenormalizedwavenumbersof the
guided waves of the substrate. Lattice modes do not exist on a

graphene‐strip grating located in the free spacebut rather on such
a grating supported by a thin substrate. Their Q‐factors for
infinite grating tend to infinity if the substrate becomes thinner;
however, in the end, the corresponding complex poles disappear
in the RAs, which are the branch points.

We have demonstrated that thanks to the tuneability of the
plasmon modes with the aid of graphene’s chemical potential,
it is possible to realize DC bias‐controlled electromagnetically
induced transparency in the THz range on the metasurface of a
microsized period. This can be useful in designing novel
tuneable filters, modulators, and absorbers that use periodically
patterned graphene.

It is worth emphasizing that accurate characterization of
such fine resonance effects as those caused by the lattice

F I GURE 7 The magnetic field patterns for four periods in the resonances on the slab mode of substrate, S1, for the same grating as in Figure 4 with
(a) ε¼ 2:25 at f ¼ 5:34 THz and (b) ε¼ 4:2 at f ¼ 3:87 THz

F I GURE 6 The magnetic field patterns for one period in the resonances on the plasmon modes P1 and P3 for the same grating as in Figure 4 with ε¼ 2:25:
(a) f ¼ 2:5 THz and (b) f ¼ 4:92 THz
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F I GURE 8 Inclined incidence on the on‐substrate grating with narrow strips. The reflectance (a), (c), (d) and absorbance (b), (e), (f) for
p¼ 70 μm; h=p¼ 1=7, ε¼ 2:25, and d=p¼ 0:1 versus the frequency at three values of the angle of incidence, α¼ 90°, 89°, and 85°. The zooms near the lattice‐
mode resonances L±10 (b) and L±20 (c), are also shown
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F I GURE 9 Inclined incidence on the on‐substrate grating with narrow slots. The reflectance (a), (c), (d) and absorbance (b), (e), (f) versus the frequency at
three angles of incidence for the same slab and grating parameters as in Figure 8 except for d=p¼ 0:9. The zooms near the lattice‐mode resonances L±10 (c),
(e) and L±20 (d), (f), are also shown
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modes needs an adequate numerical technique. Indeed,
even if a substrate is moderately thin, say, with a thickness
of 1 μm, their Q‐factors can reach 106 and thus, numerical
solutions must deliver six or more correct digits. This is
apparently beyond the capabilities of existing rough
methods and commercial codes. In contrast, the presented
technique can easily demonstrate such performance; thanks
to very high efficiency, it can also be applied in numerical
optimization software.
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