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Abstract
Considered is the plane‐wave scattering from and absorption by a thin circular dielectric
disk. The analysis uses a set of the singular integral equations for the effective electric and
magnetic currents, derived using the generalized boundary conditions on the disk median
section. Following the recently developed analytical preconditioning procedure, these
equations are discretized by the Galerkin technique with judiciously chosen expansion
functions, which provide for the Fredholm second‐kind nature of the resulting matrix
equations. This guarantees the code convergence and high efficiency. It is demonstrated
that the developed technique delivers the most important features of thin dielectric disks–
the resonances on the natural modes. In the resonances on the slab modes, the disk can
be well‐transparent and the shadow is created only by its rim; in the whispering gallery
mode resonances, the scattering occurs mainly in the disk plane.

1 | INTRODUCTION

Thin flat dielectric disk is a frequently met element of many
electromagnetic wave devices across wide spectrum of fre-
quencies and applications. Many of them, if not all, are tied to
the fact that such a disk is an open resonator, which is able to
support rather high‐Q natural modes. If the disk is illuminated
with a plane wave or excited by another type of source, then
the total field in the near and far zone can display sharp res-
onances at the natural mode frequencies. For instance, these
resonances can be seen as peaks of the total scattering cross‐
section (TSCS), bistatic radar cross‐section (BRCS) in some
specific directions, and, in the case of lossy disk material, ab-
sorption cross‐section (ACS). Lower‐order mode resonances
are exploited in the dielectric disk microwave antennas and
filters [1]. However, even more famous are high‐Q resonances
associated with the so‐called whispering gallery modes
(WGMs), supported by disks with larger than wavelength radii.
In the millimetre wave range, such disks serve as sensors of
host medium refractive index [2] and stabilize the operation of

solid state oscillators [3]. The sensing extends to the terahertz,
infrared and visible light ranges. Additionally, here a brighter
application area thrives: thinner than wavelength disks, grown
with molecular beam epitaxy and finely shaped with wet and
dry etching are exploited as microlaser cavities [4–7]. They
have active regions in the form of a few nanometre thick layers
of active materials and their working modes are WGMs. This
provides ultra‐low thresholds of light emission of such lasers.

Nanotechnologies are expensive, and therefore the pre-
ceding modelling with the aid of trusted, accurate and time‐
economic software becomes not only a desired but also a
necessary element of research and development. However, a
circular dielectric disk is a truly three‐dimensional (3‐D)
configuration and the electromagnetic wave characterization of
such disk calls for a 3‐D boundary value problem for the set of
Maxwell equations with tangential component continuity
conditions, edge condition and radiation condition at infinity.

If the disk has finite thickness, this is a rather complicated
vector problem. Reducing it to a guaranteed convergence
discretized form can be done using a set of four coupled
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Muller boundary integral equations (IEs) [8] and needs smooth
enough parameterisation of the disk surface. It is also possible
to view the disk as a pillow box with, say, polygonal cross‐
section and follows ideas of [9], however, the number of
coupled IEs increases to 12. Exploitation of rotational sym-
metry, via expanding the field in terms of the azimuthal Fourier
series, brings only a partial alleviation.

Looking for a reasonable simplification of thin disk scat-
terers, researchers frequently resort to the so‐called ‘effective
refractive index model’. It replaces the 3‐D field problem with
two simpler ones: a 1‐D problem for determining the effective
refractive index νeff and a 2‐D problem in the disk plane, that is
for a circle filled with material with νeff instead of ν = ε, in the
free space. As discussed in [10], such a replacement is empiric
and fails to characterize the field behaviour off the disk plane
completely. Even in that plane, the far field appears as a cy-
lindrical wave instead of the spherical wave as in the original 3‐
D problem.

As an alternative way of reducing the complexity while
keeping the 3‐D treatment, in [11] it was proposed to shrink
the disk thickness to zero and use so‐called generalized (or
effective) boundary conditions (GBC), supplemented with the
edge condition. The GBC are two‐sided conditions; they link
together the limiting values of the tangential field components
on two ‘faces’ of thin disk [12, 13]. In this way, the field inside
the disk is eliminated from consideration, however, the disk
thickness and material constants are still present–they enter the
GBC coefficients. This model was further cast to a set of dual
IEs in the Hankel transform domain that was reduced to the
coupled Fredholm second‐kind IEs. This guaranteed the
convergence of numerical solution; short study of a disk
excited by on‐axis parallel‐oriented elementary dipole was
presented in [14]. Note that the median line IE, obtained from
GBC, can be also solved using Nystrom discretization, which
guarantees convergence as well; this was done in [15] for a 2‐D
material strip scattering. It should be also noted that validity
and limitations of GBC model, with respect to ‘thick’ strip
analysis using the Muller IEs, were established in [16].

On adopting such amodel, one can easily see that its accurate
treatment has much in common with canonical scattering
problems associated with zero‐thickness perfect electric con-
ducting (PEC) planar scatterers [17]. PEC disk scattering has
been attacked by many techniques. Their comprehensive review
can be found in [18–21] and therefore is not given here. Still, we
believe that themost efficient technique for studying a PEC disk,
with guaranteed convergence, is the technique developed in [19].
This is a version of the Galerkin MoM combined with the
Helmholtz decomposition, which was initially applied, in the full
form, to the analysis of the plane wave scattering from a hollow
finite length PEC circular cylinder [22] and, in the simplest form,
to the analysis of axially symmetric circular dielectric disk an-
tennas [23]. Here, the basis functions are orthogonal eigen-
functions of the static limit of the corresponding spatial
hypersingular IE, hence, that IE is converted directly into a
Fredholm second‐kind matrix equation.

In [24], this efficient technique was applied to the analysis
of the plane wave scattering from a resistive disk. In the

current work, we apply it, with necessary modifications done in
[25], to the analysis of plane wave scattering and absorption by
a thin dielectric high contrast disk. So far, only a preliminary
study of the convergence of the method has been performed
by the authors [25]. The focus of our analysis is the most
important for applications question of the resonances on the
disk natural modes. This includes two types of modes. One is
related to the modes of infinite dielectric slab, which, in per-
turbed form, exists on finite disk as well. We call them slab
modes or transverse modes. The other type corresponds to the
in‐plane modes, which include WGMs. We explore whether the
WGM effect can be characterized properly, despite the use of
GBC and median line IEs.

The remainder of this study is as follows. In Section 2, an
overview of the formulation of the problem and the proposed
solution is briefly presented. In Section 3, the far field pa-
rameters used to search for the disk resonances are described.
Section 4 is devoted to show the obtained numerical results.
The conclusions are summarized in Section 5, and two
Appendices conclude the study.

2 | BACKGROUND: FORMULATION OF
THE PROBLEM AND REGULARIZING
DISCRETIZATION SCHEME

Thin magneto‐dielectric disk of radius a, thickness τ, dielectric
permittivity ε = ε0εr and magnetic permeability μ = μ0μr
immersed in free space (of material constants ε0 and μ0) and
coaxial with disk cylindrical coordinate system (ρ, ϕ, z) with
the origin at the centre of the disk are sketched in Figure 1. Let
us denote with λ ‐ the free‐space wavelength, with ω ‐ the
angular frequency and with k0 ¼ 2π=λ¼ ω ffiffiffiffiffiffiffiffiffiϵ0μ0

p ‐ the free‐
space wavenumber.

A plane wave with Einc
ðr Þ ¼ E0e−jk ⋅r and H inc

ðr Þ¼
H 0e−jk ⋅r ¼ k̂� E 0e−jk ⋅r =Z0 , where r ¼ ðρ;ϕ; zÞ, k¼
−k0ðsin θ0cosðϕ0 − ϕÞρ̂þ sin θ0 sinðϕ0 − ϕÞϕ̂ þcos θ0ẑÞ and
Z0¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
, impinges onto the disk such that a scattered field,

ðEsc
ðr Þ;H sc

ðr ÞÞ, arises. Moreover, the total field, ðE ðr Þ;
H ðr ÞÞ, is given by the sumof the incident field and the scattered
field.

Assuming that τ = λ and τ = a, the field inside the disk
can be neglected and the disk approximated with a flat

F I GURE 1 Geometry of the problem
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zero‐thickness median surface, S, located at z = 0 for ρ ≤ a and
ϕ ∈ [0, 2π], on which the following GBC have to be satisfied
[12, 13, 25]:

1
2
ẑ� ðE ðρ;ϕ; 0þÞ þ E ðρ;ϕ; 0−ÞÞ � ẑ¼ ReJeðρ;ϕÞ ð1aÞ

1
2
ẑ� ðH ðρ;ϕ; 0þÞ þH ðρ;ϕ; 0−ÞÞ � ẑ¼ RmJmðρ;ϕÞ ð1bÞ

where the currents are the field jumps across S,

Jeðρ;ϕÞ ¼ ẑ�
�

H sc
ðρ;ϕ; 0þÞ − H sc

ðρ;ϕ; 0−Þ

�

ð2aÞ

Jmðρ;ϕÞ ¼ −ẑ�
�

Esc
ðρ;ϕ; 0þÞ − Esc

ðρ;ϕ; 0−Þ

�

ð2bÞ

If the disk material is high contrast, jεrμr j≫ 1, then the
electric and magnetic resistivities are, respectively,

Re ¼ −j Z cot
�
1
2
k0

ffiffiffiffiffiffiffiffiεrμr
p τ

�

ð3aÞ

Rm ¼ −j Z−1 cot
�
1
2
k0

ffiffiffiffiffiffiffiffiεrμr
p τ

�

ð3bÞ

where Z¼
ffiffiffiffiffiffiffiffi
μ=ε

p
is the material impedance [12].

The problem at hand is a boundary value problem for the
Maxwell equations, which is uniquely solvable provided that
boundary conditions, edge condition (or, equivalently, local
power boundedness condition) and Silver–Muller radiation
condition are satisfied [26, 27].

The field, scattered from the disk, can be sought for in
the form of convolutions of the unknown effective electric
and magnetic current densities with the Green's functions
and their normal to disk derivatives. On substitution into
GBC Equation (1) on S, two decoupled surface IEs for
the effective currents can be readily obtained [12]. Taking
advantage of the revolution symmetry of the problem,
these equations can be reduced to two infinite sets of in-
dependent one‐dimensional IEs in the Hankel transform
domain [25]:

∫
þ∞

0
H ðnÞðwρÞ

�

~G
r
ðwÞ − RrI

�

~J ðnÞ
r
ðwÞwdw¼ −FincðnÞr ðρ; 0Þ

ð4Þ

for ρ ≤ a and with r = e, m, Fe = E and Fm = H, where
the apex n denotes the n‐th term of the Fourier series, the
symbol

PðnÞð ⋅ Þ ¼

 
PðnÞρ ð ⋅ Þ

−j PðnÞϕ ð ⋅ Þ

!

ð5Þ

has been introduced,

~JðnÞ
r
ðwÞ ¼ ∫

þ∞

0
HðnÞðwρÞJðnÞ

r
ðρÞρdρ ð6Þ

are the vector Hankel transform of order n (VHTn) of the n‐th
harmonics of the electric and magnetic currents,

HðnÞðwρÞ ¼
�
J 0nðwρÞ nJnðwρÞ=ðwρÞ
nJnðwρÞ=ðwρÞ J 0nðwρÞ

�

ð7Þ

Jn(⋅) and J 0nð⋅Þ are the Bessel function of the first kind and
order n and its first derivative with respect to the argument,
respectively [28],

~G
r
ðwÞ ¼

0

@
~Gr;CðwÞ 0

0 ~Gr;DðwÞ

1

A¼

¼
1

2ωηr

0

B
@

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − w2
q

0

0 −k20

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − w2
q

1

C
A ð8Þ

ηe = ε0, ηm = μ0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − w2
q

¼ −j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−k20 þ w2
q

.
Equation (4) can only be solved by making use of nu-

merical techniques. To this purpose, it is more advisable to
handle with scalar unknowns instead of vector ones. The
Helmholtz decomposition of the unknowns, that is,

JðnÞr ðρÞ ¼

0

B
B
@

d
dρ
n
ρ

1

C
C
AΦðnÞr;CðρÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

JðnÞr;CðρÞ

−j

0

B
B
@

n
ρ

d
dρ

1

C
C
AΦðnÞr;DðρÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

JðnÞr;DðρÞ

ð9Þ

where the functions ΦðnÞr;T ðρÞ for T = C, D are suitable po-
tential functions [29], and the subscripts C and D denote the
surface curl‐free and the surface divergence‐free contributions
of the surface current densities, respectively, can be the
appropriate choice because the VHTn of each contribution has
only one nonvanishing component, that is,

~J
ðnÞ

r
ðwÞ ¼

 
~J
ðnÞ
r; CðwÞ

0

!

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

~J
ðnÞ

r;C
ðwÞ

þ

0

B
@

0

−j ~J
ðnÞ
r;DðwÞ

1

C
A

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~J
ðnÞ

r;D
ðwÞ

ð10Þ

The obtained IEs are discretized by means of the Galerkin
method. In order to guarantee the convergence, the key point
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is the proper selection of the sets of basis functions to be used.
Suitable expansion series for the nonvanishing components of
the contributions in Equation (10) are shown in the following
[19, 24, 25]:

~J
ðnÞ
r;T ðwÞ ¼

Xþ∞

h¼−1þδn;0

γðnÞr;T ;h
~f
ðnÞ
T ;hðwÞ ð11aÞ

~f
ðnÞ
T ;hðwÞ ¼

ffiffiffiffiffiffiffiffiffiffi

2ηðnÞT ;h

q JηðnÞT ;h
ðawÞ

wpT
ð11bÞ

ηðnÞT ;h ¼ jnj þ 2hþ pT þ 1 ð11cÞ

where δn,m is the Kronecker delta and γðnÞr;T ;h denotes the
general expansion coefficient, which are complete and nonre-
dundant Neumann series of the weighted Bessel functions,
orthonormal on the interval (0, +∞) with the weight function
w2pT ‐1 [30], and have closed form spatial domain counterparts.
With such a choice, the physical behaviour of the components
of the cylindrical harmonics of the currents around the centre
of the disk is reconstructed. By setting pC = 3/2 and pD = 1,
even the edge behaviour of the unknowns is reconstructed and
the unique solvability of the general 1‐D IE in Equation (4) is
guaranteed [24]. Moreover, following the line of reasoning in
[19, 24], it is possible to show that the general matrix equation
obtained by means of the Galerkin method with the expansion
functions Equation (11) (shown in Appendix A for the sake of
completeness) is a Fredholm equation of the second kind in l2

because both the matrix operator and the free term have
bounded l2‐norms [19].

3 | FAR FIELD PARAMETERS

Using the stationary phase method, the far electric field can be
expressed in closed form [27] as:

Esc
s ðr; θ;ϕÞ ∼r→þ∞ e−​ j k0rr−1Fsðθ;ϕÞ ð12Þ

with s = θ, ϕ, where, in our case:

Fθðθ;ϕÞ ¼ −
k0
2

Xþ∞

n¼−∞
e
j n

�
ϕþπ

2

�
 

cθZ0~J
ðnÞ
e;Cðk0sθÞ þ ~J

ðnÞ
m;Dðk0sθÞ

!

ð13aÞ

Fϕðθ;ϕÞ ¼ −
k0
2

Xþ∞

n¼−∞
e
j n

�
ϕþπ

2

�
 

Z0~J
ðnÞ
e;Dðk0sθÞ − cθ~J

ðnÞ
m;Cðk0sθÞ

!

ð13bÞ

sθ = sin θ and cθ = cos θ. The following expression can be
readily written for BRCS:

σBRCSðθ;ϕÞ ¼ lim
r→þ∞

4πr2jEsc
ðr; θ;ϕÞj2

�
�Einc
ðr; θ;ϕÞ

�
�2
¼

4πjF ðθ;ϕÞj2

jE0j
2 ð14Þ

Moreover, the quantity σBSCS = σBRCS(θ0,ϕ0) defines the
back scattering cross‐section (BSCS) while σFSCS = σBRCS(π
−θ0,π + ϕ0) is the forward scattering cross‐section (FSCS).

TSCS and ACS are defined as follows:

σTSCS ¼
1
4π

∫
π

0
∫
2π

0
σBRCSðθ;ϕÞsin θdϕdθ ¼

¼
1
jE0j

2 ∫
π

0
∫
2π

0
jF ðθ;ϕÞj2 sin θdϕdθ

ð15aÞ

σACS ¼
Pabs

jE0j
2�
ð2Z0Þ

¼

¼
Z0

jE0j
2 ∫

a

0
∫
2π

0

�
ℜfRegjJeðρ;ϕÞj

2
þℜfRmgjJmðρ;ϕÞj

2�ρdϕdρ¼

¼
2πZ0

jE0j
2

Xþ∞

n¼−∞
∫
a

0

�

ℜfReg

�
�
�
�J
ðnÞ
e ðρÞ

�
�
�
�

2
þℜfRmg

�
�
�
�J
ðnÞ
m ðρÞ

�
�
�
�

2
�

ρdρ

ð15bÞ

where Pabs denotes the power absorbed by a lossy disk and
Rf · g denotes the real part of a complex number. They are
related to each other by means of the forward scattering
theorem (also known as optical theorem in optics) [31],
that is,

σTSCS þ σACS ¼ −
4π

k0jE0j
2 ℑ
�

E0
∗ ⋅F ðπ − θ0;πþ ϕ0Þ

�

ð16Þ

where If · g denotes the imaginary part of a complex number
and the star is for the complex conjugate of a complex number.
It is interesting to observe that, by means of Parseval equality
[32] and the Weber–Schafheitlin discontinuous integral [33],
ACS can be expressed in closed form (see Appendix B for the
details). Hence, according to Equation (16), even TSCS admits
a closed form expression.

To conclude, all the far field parameters detailed above are
expressed in closed form. As a result, they are very handy
tools for the characterization of the resonances of a dielectric
disk.

4 | NUMERICAL RESULTS

This section is aimed at showing that the proposed approach,
based on GBC and median‐surface IE, allows to fully char-
acterize the physical properties of a thin dielectric disk with
jεrμrj ≫ 1, τ ≪ a and τ ≪ λ. In order to avoid unnecessary
repetitions, it is worth noting that the fast convergence of the
method and the correctness of the corresponding software
code have been extensively demonstrated in [25] by means of
comparisons with the commercial software CST Microwave
Studio (CST‐MWS). Moreover, it has been convincingly
shown in [25] that the proposed method drastically out-
performs CST‐MWS in terms of both computation time and
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storage requirement. As a matter of fact, CST‐MWS does not
provide a 2‐D model for dielectric objects, and an accurate
simulation of thin 3‐D objects has revealed to be time‐
consuming and onerous in terms of memory requirements.
Regarding the cases examined, CST‐MWS simulations would
take several hours and tens of millions of mesh‐cells to
reconstruct the solutions on a PC equipped with an Intel Core
i7‐10510U 1.8 GHz, 16 GB RAM, running Windows 10. On
the other hand, as clearly stated in the following, short
computation time and few expansion functions are needed to
reconstruct the solutions with the proposed convergent
method.

As mentioned above, we assume that τ = λ as a necessary
albeit empiric precondition for the use of GBC. However, this
condition does not exclude the possibility that the disk thick-
ness is larger than the wavelength in the disk material, that is,
τ > λ=

ffiffiffiffiffiffiffi
jεrj

p
[12]. For this reason, in order to make an

exhaustive analysis of the dielectric disk properties, we will
follow [15] and assume ℜ{εr} = 1000. Such a value may seem
unusual, however, it can be associated with one of the novel
colossal permittivity materials [34]; this allows us to ‘catch’ a
few slab‐mode resonances even if τ = λ.

In order to quantify the rate of solution convergence, the
following normalized truncation error is introduced:

errr;NðMÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN−1

n¼−Nþ1

�
�
�xðnÞr;Mþ1 − xðnÞr;M

�
�
�
2
,

XN−1

n¼−Nþ1

�
�
�xðnÞr;M

�
�
�
2

v
u
u
t

ð17Þ

where 2N–1 is the number of the considered harmonics esti-
mated as in [35], ‖⋅‖ is the usual Euclidean norm and xðnÞr;M is
the vector of all expansion coefficients of the n‐th harmonic
(see (A2b), (A2m) and (A2n)) evaluated using M expansion
functions for each unknown. Since, according to the Fredholm
theory, lim

M→þ∞
errr;NðMÞ ¼ 0, henceforth, M is chosen in order

to guarantee that both erre,N(M) and errm,N(M) are below 10−2.
It is worth noting that, generally, this value is moderately larger
if the error of less than 10−3 is desired. As known, the error in
the far field characteristics is by order of magnitude smaller.

Figure 2(a) shows the behaviour of TSCS, ACS, BSCS and
FSCS of the disk with εr = 1000−j, μr = 1 and τ/a = 0.1 if a

F I GURE 2 Far field parameters of the disk with εr = 1000−j, μr = 1 and τ/a = 0.1 when a plane wave orthogonally impinges onto the disk (θ0 = 0°) with
E0 ¼ 1ŷ V=m for varying values of k0a, compared with the corresponding parameters of an infinite dielectric slab with the same dielectric permittivity, magnetic
permeability and thickness: (a) TSCS, ACS, BSCS and FSCS of the disk, (b) ACS of the disk versus normalized power absorbed by the infinite dielectric slab,
(c) BSCS of the disk versus normalized power scattered in the top half‐space from the infinite dielectric slab and (d) FSCS of the disk versus normalized power
scattered in the bottom half‐space from the infinite dielectric slab
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plane wave orthogonally impinges onto the disk (θ0 = 0°)
with E0 ¼ 1ŷV=m, for varying values of k0a. In that case, only
the harmonics for n = ±1 contribute to the field's
representation.

The most pronounced minima of BSCS, which can be
observed for k0

ffiffiffiffiffiffiffi
jεrj

p
τ ≅ nπ with n = 1,2,..., are associated

with the slab modes, also called transverse resonance modes.
This conclusion is simply justified in Figure 2(c) by comparing
BSCS of the disk with the power scattered into the upper half‐
space from an infinite dielectric slab of the same material and
thickness as the disk normalized to the incident power
(Psc;z>0

slab =Pinc). Moreover, as shown in Figure 2(d), even FSCS
and the normalized power scattered from the dielectric slab
into the lower half‐space (Psc;z<0

slab =Pinc) have the same behav-
iour around the slab mode resonance frequencies. BRCS and
the near E‐field pattern at the normalized slab mode resonance
frequency, k0a = 0.9934622, at which M = 6 and a computa-
tion time less than 1 s are enough to accurately reconstruct the
solution, are shown in Figure 3. As can be clearly seen, a
substantial transparency is observed so that the shadow is
produced by the disk rim only. These slab modes can be
denoted as Sn, n = 1, 2, …. Note that the interchanging
maxima and minima of TSCS are explained by the symmetry or
antisymmetry of the eigenfield of the corresponding slab mode
relatively to the median line.

The plots of ACS in Figure 2(b) show numerous peaks,
which are not reflected in the normalized power absorbed by
the infinite dielectric slab (Pabs

slab=P
inc). At the normal

incidence of a plane wave, all of them are associated with the
‘dipole‐type’ disk modes having the azimuthal index n = 1
and the radial indices m = 1, 2, .... Two examples of the near
E‐field of such kind of modes are shown: for H2,1,0 at
k0a = 0.3608708 and H3,1,0 at k0a = 0.4217781 in Figure 4(a)
and 5(c) and in Figure 4(b) and 4(d), respectively. Here, the
first subscript takes into account the radial variation of the
field, while the second one and third one stand for the
azimuthal and transversal variations, respectively. As expected,
the near E‐field behaviour shows the hot spots stretched only
along the x‐axis. It is worth noting that, for the two examples
considered, the solutions are accurately (i.e. with error in
Equation (17) less than 10−2) reconstructed by selecting
M = 7 and M = 8, respectively, with a computation time of
about 1 s.

Figure 5(a) shows TSCS, ACS, BSCS and FSCS for a TE
polarized plane wave impinging onto the disk with
jE0j ¼ 1 V=m, θ0 = 0°, 45° ,90° and ϕ0 = 0°, for varying
values of k0a. As can be clearly seen, new peaks arise
(emphasized by the straight dotted lines) for oblique incidence.
This is because now, in the scattered field, all azimuthal har-
monics are involved including the 0‐th one. Figure 5(b) and (d)
shows the near E‐field at k0a = 0.3269092 for θ0 = 45° while
in Figure 5(c) and (e), the near E‐field at k0a = 0.3952056 for
θ0 = 90°is plotted. In either case, the considered resonance
modes are identified as axially symmetrical modes H2,0,0 and
H3,0,0; their frequencies are almost independent of the inci-
dence angle. As the cases examined above, the solutions are

F I GURE 3 BRCS and near E‐field behaviour of the disk with εr = 1000−j, μr = 1 and τ/a = 0.1 when a plane wave orthogonally impinges onto the disk
(θ0 = 0°) with E0 ¼ 1ŷ V=m at the transverse resonance frequency k0a = 0.9934622: (a) BRCS in the xz‐plane, (b) BRCS in the yz‐plane, (c) near E‐field in the
xz‐plane and (d) near E‐field in the yz‐plane
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accurately reconstructed by choosing M = 7 and M = 8,
respectively, even if now N = 4 has to be considered, with a
computation time of about 1.5 s. It is interesting to observe
that all the new resonances arising for oblique incidence
shown in Figure 5(a) are associated to axially symmetrical
modes, while the ‘dipole‐mode’ resonances are present both in
the normal and inclined incidence cases. Note that just above,
in frequency, of the first slab mode resonance, new sequence
of in‐plane mode resonances appears. These new modes have
their fields with one variation along the z‐axis, hence their
third index, q = 1.

Naturally, a question arises about the resonances on the
higher azimuthal harmonics, including WGMs, which must
also give response to the plane wave excitation at the inclined
incidence.

To provide the conditions for sufficiently high Q‐factors of
WGMs, we assume now that the losses in material are two
orders lower than in the case examined in Figures 2–5,
εr = 1000−j 10−2. Moreover, in order to maximize the number
of significant harmonics of the incident field, the grazing
incidence is considered.

For the TE polarization, the behaviour of TSCS, ACS,
BSCS and FSCS versus the normalized frequency is shown in
Figure 6(a). One can clearly see an almost periodic sequence of
sharp peaks associated with principal WGMs of the radial
index n = 1 and azimuthal indices m = 2, 3, … Their analysis
demonstrates that while ACS reaches maximum values at all
WGM frequencies, and TSCS–at least at all higher‐m WGMs,

both the FSCS and especially BSCS can drop sharply. The
explanation is, apparently, in the fact that the eigenfields of
each WGM have 2m identical intensive lobes, radiating in the
disk plane only. Thus, at the grazing incidence, ‘ignition’ of
such a field spoils mainly the backward scattering while the
forward scattering, dominated by the shadow lobe, is less
vulnerable.

In Figure 6(b) and (d), the near E‐field behaviour of the
WGMH1,3,2 can be observed at k0a = 2.0467460, while the
near E‐field behaviour of the WGMH1,4,2, obtained at
k0a = 2.0590945, is shown in Figure 6(c) and (e). Here, the
third index is q = 2 because their frequencies are above the
second slab mode, S2 – see Figure 2. It is interesting to note
that, besides the classical ‘necklace’ pattern of the field hot
spots, known for 2‐D circular cavity, a bright edge can be
observed due to the singular edge behaviour in the zero‐
thickness GBC model considered. This feature, which is nat-
ural in the 3‐D modelling, cannot be reproduced in the 2‐D
modelling with the aid of empiric ‘effective refractive index'
concept. It is interesting to observe that, even in such cases,
few expansion functions, M = 24 and M = 23, respectively, and
harmonics, N = 9, are needed to obtain the solutions within
less than 10−2 error in Equation (17) with a computation time
of only 8 s.

Far field patterns in the xy‐plane at the same resonance
frequencies are shown in Figure 6(f) and 6(g), respectively.
They show the shadow lobes in the forward direction and
intensive sidelobes appearing around the disk.

F I GURE 4 Near E‐field behaviour in the xy‐ and xz‐planes of the disk with εr = 1000−j, μr = 1 and τ/a = 0.1 when a plane wave orthogonally impinges
onto the disk (θ0 = 0°) with E0 ¼ 1ŷ V=m at dipole mode resonance frequencies: (a) near E‐field in the xy‐plane for k0a = 0.3608708 (H2,1,0), (b) near E‐field in
the xy‐plane for k0a = 0.4217781(H3,1,0), (c) near E‐field in the xz‐plane for k0a = 0.3608708 (H2,1,0) and (d) near E‐field in the xz‐plane for k0a = 0.4217781
(H3,1,0)
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5 | CONCLUSION

We have presented the essentials of the MAR‐based compu-
tational technique and analysis results for the plane wave
scattering from and absorption by a thin circular dielectric disk.
Thanks to the judiciously chosen expansion functions in the
Galerkin MoM discretization of associates singular IEs, we can
exploit all the power of the Fredholm second‐kind matrix
equations and enjoy the guaranteed convergence.

The main objective of our study has been the verification
of whether or not the use of GBC and zero‐thickness ‘effec-
tive’ disk model can deliver the practically important effect of
the natural mode resonances. We have demonstrated that this

is true: as we have found, in the resonances on the slab modes,
the disk can be well‐transparent and the shadow is created only
by its rim; in the WGM resonances, the near‐field pattern is
dominated with characteristic azimuthally periodic ‘necklace’ of
the field hot spots and the scattering occurs mainly in the disk
plane. Interestingly, the considered model, despite being
simplified because the field inside the disk is ignored, is still
able to reproduce the field variations, at higher frequencies,
along the disk axis. This feature is incorporated into GBC,
which are, therefore, applicable in wider range of parameters
than could be expected. Another feature, which is well
reproduced, is the singular behaviour of some of the field
components near the rim of 3‐D dielectric disk.

F I GURE 5 Far field parameters for varying values of k0a and near E‐field behaviour in the xy‐ and xz‐planes at the axially symmetrical resonance
frequencies of the disk with εr = 1000−j, μr = 1, τ/a = 0.1 when a TE polarized plane wave with jE0j ¼ 1 V=m and ϕ0 = 0° obliquely impinges onto the disk:
(a) TSCS, ACS, BSCS and FSCS for θ0 = 0°, 45°, 90° and varying values of k0a, (b) near E‐field in the xy‐plane for k0a = 0.3269092 and θ0 = 45° (H2,0,0), (c) near
E‐field in the xy‐plane for k0a = 0.3952056 and θ0= 90° (H3,0,0), (d) near E‐field in the xz‐plane for k0a = 0.3269092 and θ0 = 45° (H2,0,0) and (e) near E‐field in the
xz‐plane for k0a = 0.3952056 and θ0 = 90° (H3,0,0)
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F I GURE 6 Far field parameters for varying values of k0a, near E‐field behaviour in the xy‐ and xz‐planes, and BRCS in the xy‐plane at the WGMs
resonance frequencies of a disk with εr = 1000−j 10−2, μr = 1, τ/a = 0.1 when a TE polarized plane wave with jE0j ¼ 1 V=m and ϕ0 = 0° impinges onto the disk
at the grazing incidence: (a) TSCS, ACS, BSCS and FSCS for varying values of k0a, (b) near E‐field for k0a = 2.0467460 in the xy‐plane (WGMH1,3,2), (c) near E‐
field for k0a = 2.0590945 in the xy‐plane (WGMH1,4,2), (d) near E‐field for k0a = 2.0467460 in the xz‐plane (WGMH1,3,2), (e) near E‐field for k0a = 2.0590945 in
the xz‐plane (WGMH1,4,2), (f) BRCS for k0a = 2.0467460 in the xy‐plane (WGMH1,3,2) and (g) BRCS for k0a = 2.0590945 in the xy‐plane (WGMH1,4,2)
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We believe that these results can be useful in the electro-
magnetic design of novel sensors, antennas and laser sources
based on the dielectric disk cavities, in THz, infrared and visible
light frequency ranges.
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APPENDIX A
The Fredholm second‐kind matrix equation obtained by means
of the procedure detailed in Section 2 is:

xðnÞr þ A
ðnÞ
r x
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APPENDIX B
By means of Parseval’s formula [32] and remembering Equa-
tion (10), it can be stated that:

∫
a

0
jJðnÞ
r
ðρÞ
�
�2ρdρ¼ ∫

þ∞

0
j~JðnÞr ðwÞ

�
�2 wdw¼

¼ ∫
þ∞

0
j~JðnÞr;CðwÞ

�
�2 wdwþ ∫

þ∞

0
j~JðnÞr;DðwÞ

�
�2 wdw ðB1Þ

LUCIDO ET AL. - 1169



According to Equation (11), it is simple to write:
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To conclude, the integral in Equation (B3) can be written in
closed form by using the Weber–Schafheitlin discontinuous
integral [33], obtaining:
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