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Abstract—A full-vectorial contour integral equation analysis
of the natural modes of dielectric waveguides (DW) of arbitrary
cross section is presented. The Galerkin method, together with the
Analytical Regularization procedure, is applied to discretizing and
solving the eigenvalue problem. This ensures the fast convergence
and superior accuracy of the numerical algorithms. The waveguide
cross section is characterized by a parametrical curve defining
its contour, with a limited curvature at each point. This avoids
the singularity points at corner regions and provides accurate
results, even for waveguides with virtually sharp corners. Both
fundamental and higher order mode propagation characteristics
are studied in the bound, leaky, and complex regimes. Numerical
results consistent with other theories and experimental data are
presented for a wide range of practical dielectric waveguides that
demonstrate the efficiency, accuracy, and versatility of the method
developed. Finally, the technique is applied to model a fused fiber
coupler.

Index Terms—Dielectric waveguides, Green’s functions, integral
equations, optical waveguide theory, vector modal methods.

I. INTRODUCTION

D IELECTRIC fibers and waveguides are essential building
blocks of most optical devices and systems related to com-

munications, sensing, and optical computing. To reduce the cost
of dielectric waveguide (DW) analysis and optimization, effi-
cient CAD simulation techniques are highly desirable. A great
number of methods have been proposed for the analysis of DW
natural modes, both cross-section-specific and applicable to ar-
bitrarily shaped waveguides. They include mode matching tech-
niques [1], effective dielectric constant approximations [2], and
finite element [3], [4] and finite difference methods [5], [6].
Some of the approaches are limited to scalar, polarized, or semi-
vectorial cases, while others can be applied to the full-vectorial
case (see reviews [7], [8] for details).

With recent progress in computer technology, mode-solvers
based on the finite difference techniques have become very
popular design tools. However, except for several canonical
structures, the study of arbitrary shape fibers and guides leads
to problems with nonseparable boundary conditions, which
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render conventional differential-operator methods ineffective.
Their application, especially for the full-vectorial case, leads to
large asymmetric eigenvalue problems, the numerical solution
of which is not only time and memory consuming but also
has unclear accuracy. The convergence of such methods is not
uniformly guaranteed and actually depends on implementation.
Moreover, for a full-vectorial formulation, transverse electric
field components diverge at the sharp corners of DWs, making
numerical methods unstable. An analytic treatment of the field
behavior in the corner regions should be incorporated in the
analysis [9], [10]. Thus, there is still a need for a uniformly
reliable and efficient tool for modal field prediction.

An application of integral-operator formulations provides
several advantages over conventional differential formulations.
In this case, the radiation conditions and boundary conditions at
the dielectric interfaces in a layered environment are rigorously
accounted for in the formulation of the Green’s function of a
host medium. Furthermore, integral equation (IE) techniques
are not cross-section-specific and are therefore suitable for an-
alyzing a broad class of dielectric waveguides having arbitrary
shape and refractive index profiles. Various boundary element
method (BEM), finite element method (FEM), and method of
moments (MoM) algorithms based on the surface and domain
integral equation formulations have been proposed to study
arbitrary shaped waveguides [11]–[14]. In the full-vectorial im-
plementation, they also enable one to treat the sharp corners of
DWs [14]. Domain IEs have a certain advantage as they permit
treatment of waveguides of inhomogeneous cross sections,
but they are strongly singular and numerical algorithms based
on them are not very efficient in terms of both computation
time and convergence. Therefore, contour IE techniques seem
to be more promising for implementing efficient numerical
techniques based on the full-vectorial problem formulation.

This paper presents a reduction of the eigenvalue problem to
the contour IEs, which only requires the discretization of the
contour of a DW. However, a direct application of the standard
Galerkin discretization technique may present difficulties due
to the singular behavior of the integral operators. A method that
enables one to overcome this difficulty and obtain a stable and
well-conditioned matrix equation has been proposed in [15] for
two-dimensional (2-D) free-space scattering problems by di-
electric cylinders. It belongs to the family of techniques col-
lectively called method of analytical regularization [16]. In this
paper, we extend the analysis to solve for the modes of regular
DWs. The expansion of components in a certain set of basis
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functions and analytical inversion of the singular part of the inte-
gral operators lead to a rigorous conversion of the singular IEs to
Fredholm second-kind infinite-matrix equations. This guaran-
tees the convergence and accuracy of computations and provides
a clear physical picture of various DW propagation regimes.

The guaranteed stability of the method means that we can
address with confidence the higher order modes in the leaky
regime for which there is a scarcity of results even for conven-
tional circular or rectangular waveguides. It is well known that,
unlike closed waveguides, for which the propagation modes are
discrete and infinite in number, the spectrum of DWs is more
complex. Here, there are two options. One is to impose the con-
dition of the field decay in the cross section. Then, in addition
to the discrete spectrum of proper guided natural modes, DWs
are shown to support a continuous spectrum of radiation modes.
The other approach is to generalize the condition at infinity in
the cross section and admit the field growth. This is done by
imposing the so-called Reichardt condition [17], which serves
as the analytic continuation of the Sommerfeld condition to the
complex domain. In this case, it is proven that the spectrum of
generalized eigenwaves is discrete and located on the Riemann
surface of a certain logarithmic function [17].

In most of the above-cited papers, only the bound modes
were considered. The leaky modes have been quite extensively
studied for striplines [18], planar dielectric guides [19] and rib
waveguides [20], [21]. To date, the behavior of the circular fiber
symmetrical modes in the leaky regime has been studied by
using approximate analytical formulations in [22], [23], and
the characteristics of its lowest modes are reported in
[24] but only in the weakly guiding approximation. Moreover,
it has been shown that DWs can support exponentially decaying
modes with complex propagation constants (“proper” complex
quasieigenmodes [25]). Along with the potential applications
to various optoelectronic devices, knowledge of the properties
of complex, leaky, and radiation modes is essential when cal-
culating losses due to radiation at DW discontinuities, adjacent
objects, or coupling into other guiding structures. As our for-
mulation is essentially complex, leaky and complex waves can
be treated with no additional analytical or computational effort
and material losses can be easily included into the analysis.

The paper is organized as follows. In Section II, the eigen-
value problem is formulated and contour integral equations are
introduced. Section III details the application of the Method
of Analytical Regularization to the discretization of IEs and a
well-conditioned Fredholm second-kind infinite-matrix equa-
tion is obtained. Zeroes of the matrix determinant yield the prop-
agation constants of all the natural modes of the waveguide. Nu-
merical results are presented in Section IV for rectangular, trian-
gular, circular, and elliptic DWs, as well as for a fused fiber cou-
pler. Dispersion characteristics and electromagnetic field pro-
files in bound and leaky regimes are shown and where possible
compared with published data. Finally, conclusions are given in
Section V.

II. EIGENVALUE PROBLEM AND BASIC EQUATIONS

Consider the propagation of electromagnetic waves in an
open isotropic uniform-cladding waveguide of arbitrary cross

Fig. 1. Cross section of a dielectric waveguide.L is an original arbitrary
smooth contour, and circle of radiusa is the standard contour for which an
analytical solution exists.

section, as shown in Fig. 1. The uniform core and cladding
media are characterized by constant refractive indices, or
dielectric constants , , respectively. A cross section of the
DW is bounded by a closed doubly continuously differentiable
curve that can be uniquely described by the parametric
expressions: , , , where is
a parameterization parameter. As will be shown later in this
paper, a wide class of optical guides of practical interest can be
described by defining the exact form of parametric expression
for . A local rectangular coordinate system may be chosen as
shown in Fig. 1 ( and are normal and tangential unit vectors
to the contour , respectively). The time dependence is assumed
to be and is suppressed throughout the paper. As
we consider longitudinally invariant waveguides, assume that
the only dependence for the unknowns is , where

is a propagation constant in thedirection and is the
free-space wavenumber.

The total field is to satisfy the Maxwell equations with cor-
responding coefficients in each material and the conditions of
continuity at the contour

(1)

Here, or , respectively, and

(2)

We shall take the basic components to beand and de-
rive all the other components from them. Integration along the

axis furnishes a Fourier transform of the three-dimensional
(3-D) problem and makes it 2-D. The basic field components
should then satisfy a pair of coupled scalar wave equations

(3)
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The conditions of continuity of tangential components of the
fields across the contour can be written as follows:

(4)

(5)

(6)

(7)

where , , is the outer
normal derivative, and is the tangential derivative to the
contour . Besides, as we consider an open-domain problem, a
Reichardt condition at infinity should be imposed [17].

The fields in the core and the cladding can be presented in
the form of single-layer surface potentials over the contour of
the DW cross section (subscriptsand have been omitted for
compactness)

(8)

The kernel functions , are the Green’s functions of the
uniform media with permittivity and , respectively, and are
given by the following expression:

(9)

Here, is the zeroth-order Hankel function of the first
kind. By imposing the continuity of the unknown tangential
components of the electric and magnetic fields at the core
/cladding interface, we obtain the set of coupled contour IEs

(10)

(11)

(12)

(13)

where the vectors, refer to points along the contour. The
complex values of the parameterfor which a nontrivial solu-
tion of the set (10)–(13) exists give the propagation constants of
the waveguide eigenmodes.

III. OUTLINE OF THE ANALYTICAL REGULARIZATION METHOD

According to (8), the behavior of the kernels of the IEs (10)
and (11) is determined by the behavior of the Hankel functions

. The latter are known to have logarithmic
singularities at . The kernels of the integrals in the IEs
in (12) and (13) are normal and tangential derivatives of the
Green’s functions on the contour of the waveguide. On the con-
tour with a continuous curvature, normal derivatives of the
Green’s functions have finite limit values at , determined
by the value of the contour curvature. Finally, the integral opera-
tors with the kernels represented by tangential derivatives of the
Green’s functions have Cauchy type singularity at . The
presence of these singularities may present considerable diffi-
culties for the effective solution of the integral equations. We
suggest exploiting the fact that the integral operators for the cir-
cular fiber problem have the same type of kernel singularities,
while the problem is known to have an analytical solution. The
Green’s functions and their derivatives for the case of a circular
fiber of radius can be written as follows (subscriptsand
are omitted):

(14)

(15)

(16)

Therefore, by adding and subtracting the integral operators
for the circular case to the (10)–(13), we can perform an ana-
lytical regularization of the singular IEs (10)–(13). Using the
functions , which are the orthogonal eigenfunc-
tions of all the integral operators (14)–(16), as a global basis in
the Galerkin discretization scheme we combine the analytical
regularization and discretization of integral equations. Thus,
expanding the kernel functions and unknown field densities
in (10)–(13) in terms of the Fourier series and performing
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term-by-term integration and differentiation, we obtain an
infinite set of matrix equations

(17)

(18)

(19)

(20)

where

(21)

and , are the
Bessel and Hankel functions, respectively, and the prime repre-
sents the derivative with respect to the argument. Coefficients

and are defined similar to (21). Here all the func-
tions expanded into the double Fourier series are constructed as
the differences between the original IE kernels and the kernels
for the circular case and thus are regular at . They and
their limit values at are as follows (subscripts and
are omitted):

(22)

(23)

(24)

(25)

where . Note that all the matrix
elements , , and turn to zero in the case of a
circular contour . Following [15], one can verify that the ma-
trix operators and are compact in the space if the
contour is a smooth curve without sharp edges. The homoge-
neous block-matrix (17)–(20) will only have nontrivial solutions
for discrete values of the longitudinal propagation constant
corresponding to the zeros of the matrix determinant. Once the
zeros of the determinantal equation are found, the electric and
magnetic field profiles can be calculated.

In open structures like optical waveguides, the propagation
eigenproblem, consisting of the Helmholtz equation together
with the boundary conditions at the core/cladding interface and
Reichardt condition at infinity, is not self-adjoint. As a conse-
quence, modes having complex-valued propagation constants
can exist even in the DWs with no material losses. These are
leaky modes that grow at infinity, whose eigenvalues are lo-
cated on the second, nonphysical sheet of the Riemann surface
of the function , and “proper” complex
modes that have fields vanishing at infinity in the waveguide
cross section with eigenvalues located on the physical sheet of
the Riemann surface [25]. Both characterize physical field os-
cillations and are not spurious solutions that arise due to the nu-
merical method used for computations. Therefore, the search
for zeros of the determinant has to be performed in the complex
plane rather than on the real axis.

Due to the Fredholm second-kind nature of (17)–(20), a uni-
form accuracy of the numerical algorithm can be achieved pro-
vided that the truncated matrix size is adapted to the wave-
guide parameters. It also results in small matrices, thus reducing
the computation time. Fig. 2 shows the computation error as
a function of the truncated matrix size. It can clearly be seen
that the smoother the contour of the DW cross section then
the smaller the final matrix size. Furthermore, larger values of
the truncation number should be taken to calculate higher order
modes with the same degree of accuracy as principal modes. For
example, it is sufficient to take and to achieve
a guaranteed accuracy of the propagation constants of the prin-
cipal modes of the elliptical and rectangular waveguides consid-
ered in Section IV, respectively, up to the fourth decimal place
in the sensitive normalized propagation constant. CPU time per
iteration, including filling the matrix and root finding, was 3
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Fig. 2. Computational errors of the normalized propagation constants: (a)
principal modes of DWs of various shapes and (b) principal and higher order
modes of the elliptical waveguide.

s for the elliptical and 8 s for the rectangular waveguide on a
999-MHz PC.

IV. SIMULATIONS OF OPTICAL WAVEGUIDES

In this section we demonstrate the performance of the method
developed by studying a number of examples. The refractive
index profile of the core of a general step-index dielectric wave-
guide is characterized by the refractive index step:

. It should be noted that unlike vectorial finite-difference
mode solvers the present method does not have any numerical
drawback for high-index-contrast waveguides. The modal dis-
persion characteristics are the dependences of the normalized
propagation constant, on the normalized frequency, where

(26)

where is a characteristic size of the DW minor axis.

A. Buried Rectangular Dielectric Waveguide

As a first example, we consider a buried rectangular-core
waveguide. The rectangular cross section is described by using
the “super-ellipse” formula [15]

(27)

Fig. 3. Normalized propagation constants versus superellipse parameter�.

Fig. 4. Dispersion characteristics of a rectangular DW (n = 1:5, n =

1:45, � = 2, and� = 10).

The greater the value of parameter, the closer the shape
of the cross section approaches that of a rectangle (the case of

corresponds to the elliptical cross section). First, to vali-
date such an approximation of the contour, we study the change
of the normalized propagation constantwith the increasing
parameter . The results are presented in Fig. 3 for two cases:
high ( ) and low ( ) index steps. The ref-
erence data have been taken from [6] and [13], respectively, for
the waveguides with parameters: , ,
and , , . It can be seen that in both
cases it is enough to take a value ofequal to 10 or greater to
get a sufficient approximation of a rectangle.

The modal dispersion characteristics of the rectangular-core
waveguide are shown in Fig. 4. For comparison, the numer-
ical data of a vectorial finite-difference method [6] (circles) and
scalar contour integral equation technique [11] (triangles) are
depicted for the bound modes. In this figure, as well as all the
following ones, the solid and dashed curves correspond to the
real and imaginary parts of the normalized modal propagation
constants, respectively. It can be seen that the principal
modes are proper surface waves having a purely realfor
any value of the frequency, while other modes become leaky
ones below the cutoff frequencies. Rigorous study of the mode
coupling requires considering the whole spectrum of the DW
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Fig. 5. Dispersion characteristics of an equilateral triangular waveguide.
(n = 1:5, n = 1:0).

modes. Knowing the modal properties of the leaky modes is
of great importance since waveguide discontinuities, such as
bends, junctions, and shape imperfections, cause the excitation
of the radiation and leaky modes.

B. Equilateral Curvilinear Triangular DW

Next, we consider another geometry with virtually sharp cor-
ners, an equilateral triangular core waveguide. A parametric ex-
pression for a smooth approximation of a triangular contour can
be written as follows:

(28)

Fig. 5 shows the dispersion characteristics of the triangular-core
DW. The results for the fundamental mode are consistent
with those obtained in [3] using FEM and BEM. As the figure
shows, all the hybrid modes are degenerate. This is because of
the symmetry of the structure, e.g., the odd mode about the line

is, in fact, a superposition of two even modes about
and and vice versa, so that their prop-

agation constants are identical. The explanation of this feature
of the triangular-core waveguide has been given in [26]. How-
ever, due to the round-off errors, the point-matching technique
applied in [26] was unable to successfully show the degeneracy.

C. Dielectric Waveguides of Circular and Elliptic Cross
Sections: Optical Fibers

Next, the modal analysis of circular and elliptical fibers,
shown in the insets of Figs. 6 and 7, is performed. The modal
dispersion characteristics for the first seven modes of a circular
fiber are presented in Fig. 6. These results coincide with the
exact solutions of the well-known transcendental eigenvalue
equation for circular fibers. Due to the spatial symmetry of the
fiber cross section, all the natural modes apart from and

are double-degenerate.
Elliptical waveguides enable one to remove the mode polar-

ization degeneracy and therefore provide stability of the mode
patterns against DW shape imperfections or environmental

Fig. 6. Dispersion characteristics of a circular fiber (n = 1:41,n = 1:0).

Fig. 7. Dispersion characteristics of the elliptical waveguide (n = 1:41,
n = 1:0, � = 1:5).

changes. Thus, polarization-maintaining elliptical DWs find
applications in dual-mode fiber-optics systems and coherent
optical transmission [4]. Fig. 7 presents the modal dispersion
characteristics of an elliptic DW. It can be clearly seen that
all the double-degenerate modes split into two polarizations,
the value of the polarization birefringence being different
for various modes. The polarization birefringence depends
strongly on the core ellipticity and increases with an increase
in the elongation parameter.

The mode intensity profiles in bound, complex and leaky
regimes are shown in Fig. 8(a)–(c), respectively. As can be seen
from Fig. 7, when reaching the cut-off frequency, the hybrid
mode becomes first a complex mode and, as the param-
eter decreases, a classical leaky mode.

D. Fused Fiber Couplers

Finally, to demonstrate the versatility of the contour IE
method, two geometries of a fused fiber coupler depicted in the
insets of Fig. 9(a) and (b) are considered. The coupler essen-
tially consists of two optical fibers brought into close proximity
in order to transfer the power from one channel to another or
split or combine the power of different channels. Here, the
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Fig. 8. Transformation of theHE hybrid mode of the elliptic fiber (n =

1:41, n = 1:0, and� = 1:5): E andH field profiles of (a) bound modes,
(b) complex modes, and (c) leaky modes.

Fig. 9. Dispersion characteristics of the fused fiber couplers. (a)n = 1:41,
n = 1:0, � = 0:81, and� = 0:4. (b)n = 1:41, n = 1:0, � = 1:5, and
� = 0:49.

coupling occurs between two pairs of modes, even/odd,
for odd and even field distributions, respectively. A parametric
expression for a fused fiber coupler can be written as follows:

(29)

Fig. 10. Field intensity profiles of (a)HE even and (b)HE odd modes of
the fused fiber couplers with the same parameters as in Fig. 9.

The dispersion characteristics of the four principal modes of
the circular and elliptical fiber coupler are plotted in Fig. 9. The
field distributions of even and odd modes of both cou-
plers are shown in Fig. 10.

V. CONCLUSION

A full-vectorial analysis using contour integral equation for-
mulation for the study of natural modes of dielectric waveg-
uides has been presented. A set of contour IEs has been obtained
from a rigorous integral representation of the fields and further
discretized by using a global-basis Galerkin method together
with the Analytical Regularization technique. This results in a
final block-matrix equation of the Fredholm second kind, which
guarantees the stability and a very fast convergence of the nu-
merical algorithm as well as reduction of the computer time and
memory resources. Sample results have been presented for sev-
eral practical geometries. To establish the validity of the present
method, we demonstrated a very good agreement with the prop-
agation constants of bound modes obtained by other methods
for some conventional waveguide structures. Furthermore, we
investigated the properties of the leaky and complex modes of
the same waveguides. Finally, the characteristics of the fused
optical fiber coupler were studied.

The method can be used for the study of the polarization-de-
pendent properties of a wide range of waveguide-based photonic
structures. One of the attractive features of the approach pro-
posed is that it is formulated in the complex domain and so im-
mediately allows calculation of leaky modes and the treatment
of lossy and amplifying media. The method is very versatile and
with some modifications may be applied to waveguides of arbi-
trary geometrical shapes located in the layered dielectric media,
such as rib waveguides of various profiles, multicladding fibers,
and dielectric image guides.
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