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This work considers the near-infrared range diffraction radiation (DR) from a modulated beam of particles pass-
ing between two identical dielectric circular nanowires covered with graphene. The resistive boundary conditions
are set on the zero-thickness graphene covers with the electron conductivity determined from the Kubo formalism.
Assuming that the beam velocity is fixed, we use the separation of variables in local coordinates and the addition the-
orems for cylindrical functions and cast the DR problem to a Fredholm second-kind matrix equation. This allows us
to compute both near- and far-field characteristics with controlled accuracy. The analysis reveals that a shift of the
beam trajectory from the central-symmetric position enables the excitation of additional resonances on the modes,
which remain “dark” otherwise. Ignition of these resonances can be considered as a tool for noninvasive beam posi-
tion monitoring with microscale devices. ©2021Optical Society of America
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1. INTRODUCTION

Graphene is a new material that consists of a monolayer or a
few such layers of graphite, i.e., has subnanometer thickness.
It has remarkable properties like transparency in the visible
range, mechanical strength, and good electron conductivity
in the terahertz and infrared (IR) ranges. The conductivity
is a function of the temperature, electron relaxation time,
frequency, and chemical doping. Graphene can support the
plasmon-guided wave at the terahertz and IR frequencies that
makes its electromagnetic properties similar to noble metal
ones in the visible-light range, but at much lower frequencies.
What is principally new is that graphene conductivity and
hence the plasmon effect can be tuned using the DC bias, which
translates to the chemical potential [1,2]. Usually, graphene
is attached to flat dielectric substrates; however, now curved
substrates have been attracting increasing attention [3,4].
Recently, graphene-covered nanowire fabrication and syn-
chrotron nanospectroscopy measurements have been reported
in [5]. Note that circular-wire dimers coated with graphene have
been studied with commercial codes in the context of field forces
[6] and cloaking [7], and with in-house code based on the local
Fourier expansions in the analysis of eigenfrequencies [8].

Diffraction radiation (DR) is a term used to characterize the
effect of the electromagnetic-wave radiation, of any frequency
that accompanies the electron beams flowing near metal and
dielectric objects. An early example of DR is the Smith–Purcell
effect [4], or visible-light radiation from the electron beam mov-
ing across a grating. Later it was extensively studied theoretically

in [9–12] and other publications. As DR is the radiation of the
currents induced by the beam, on the nearby metal and dielec-
tric scatterers, it perfectly matches the design requirements of
noninvasive beam position monitors (BPMs).

Microwave-range BPMs are already in use at probably all
existing accelerators and colliders [13–17]. The nanoscale
circuit elements, available today due to the progress of nan-
otechnology, open new opportunities in the design of BPMs
based on terahertz, IR, visible-light, and ultraviolet range DR
[18–27].

The small size of micro- and nanosized scatterers makes their
effect on the beam velocity and trajectory negligible, so that
one can consider these parameters as fixed. Then, the modeling
of the DR effect can be performed using linear formulation,
as a problem of classical electromagnetic-wave scattering the-
ory. However, unlike conventional plane or spherical waves,
the incident wave, which produces DR, is the given field of a
charged particle or a beam in free space. In the latter case, such
a field is a slow wave, traveling with the same phase velocity as
the beam itself. What is especially interesting is that this field is
antisymmetric with respect to the beam trajectory.

Measuring the DR intensity in the near or far zone, one can
monitor the electron-beam parameters. As BPM is a specific sen-
sor, optimization of its performance requires finding a favorable
combination of its elements’ shapes and materials. Here, the
use the resonance effects is a promising approach. A resonance
enhances the DR intensity proportionally to the associated
Q-factor of the resonating mode. In the microwave range,
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various coaxial metallic hollow cavities integrated with the
drift tubes are common. This approach can be extended to the
terahertz and IR ranges if suitable resonators shaped as subwave-
length scatterers are found. One possible approach is the use of
high-refractive-index materials; however, available today dielec-
tric materials have refractive indices within several dozens, so
that the resonances on their lowest modes entail only moderately
subwavelength dimensions [23,24]. The other approach uses
the noble-metal scatterers, able to support the surface plasmon
modes in the visible range; however, these modes have rather low
Q-factors [25,26]. The way out can be seen in the exploitation
of the plasmon modes on the patterned graphene or graphene-
coated scatterers. Note that such configurations have already
been studied as the elements of promising IR and terahertz range
sensors of the host-medium refractive index [28] and tunable
filers [29,30], absorbers [31], scatterers [32], and antennas [33].

The Q-factors of the graphene plasmon modes in the tera-
hertz and IR ranges have moderate values (20–100) that are
higher than those of a solid metal wire in the visible-light range.
This makes graphene-coated dielectric micro- and nanowires
attractive as resonance scatterers in many applications [1–8],
including DR-based BPMs.

In the case of 2D modeling, the design of a DR-based BPM
sensor must involve not a single scatterer but two identical ones,
for instance, the edges of a slot [19], so that the beam moves
between them. Then a difference in the DR intensity or in the
angular radiation patterns from the opposite sides of the beam
trajectory can serve as indicator of a shift in the beam position.
This explains the interest in the twin solid dielectric nanowire
and twin noble-metal solid-wire and nanotube BPM configu-
rations, studied numerically in [23–26], respectively. DR from
a dimer of spherical dielectric particles has been studied in [27]
in an approximate manner, using the concept of the averaged
polarizability.

In this work, we study an IR-range BPM configuration,
based on twin dielectric nanowires coated with graphene
covers (see Fig. 1). In our full-wave analysis, we follow that
of [24–26], modified to account for the graphene coating.
Our goal is to investigate how the position of the beam trajec-
tory influences the power of DR and the excitation of high-Q
plasmon resonances.

Fig. 1. Cross-sectional geometry of electron beam moving between
a pair of identical dielectric circular microwires with graphene covers.

2. PROBLEM FORMULATION AND BASIC
EQUATIONS

We consider a flat zero-thickness beam of electrons flowing
along the straight trajectory at the distance h from the x axis,
with a fixed velocity v = βc , where c is the light velocity and
β < 1. The beam charge density function, if modulated in time
in harmonic manner with the frequencyω and amplitudeρ0, is

ρ = ρ0δ(y − h) exp[i(kx/β −ωt)], (1)

where δ(·) is the Dirac delta function and k =ω/c is the free-
space wavenumber. Note that the harmonically modulated
beam charge [Eq. (1)] can be associated with the Fourier trans-
form, in time, of the charge of single particle. Besides, the beam
charge density can be premodulated using a periodic waveguide
or external laser illumination [21].

As is known (see [10–13], for instance), the field of the beam
[Eq. (1)] is an H-polarized slow surface wave propagating along
the beam trajectory with the same phase velocity as the beam
itself,

H0
z (x , y )= Aβsign(y − h)e−q |y−h|e i(k/β)x , (2)

where q = kγ /β, γ = (1− β2)1/2 is inverse Lorentz factor,
sign(·)=±1, the time dependence is omitted, and the constant
in the SI system of units is A= cρ0/2.

Figure 1 presents the considered BPM configuration. Two
identical circular dielectric wires with graphene covers (marked
#1 and #2) have the radius a and refractive index α =

√
ε. They

are placed in the free space with the air gap s , and L is the dis-
tance between their axes. We assume that the modulated beam
of particles [Eq. (1)] flies in parallel to the x direction between
the wires at the distance h from the center of the air gap. We
introduce the Cartesian and the local (r1,2, ϕ1,2) and global
(r , ϕ) polar coordinates, as shown in Fig. 1. The formulation
of the 2D wave-scattering boundary-value problem involves
the Helmholtz equation with corresponding wavenumber in
each partial domain, the graphene-surface boundary conditions
at the wire contours, the Sommerfeld radiation condition at
infinity, and the condition of local power finiteness. These
conditions guarantee the uniqueness of the boundary-value
problem solution.

In the case of H-polarization, one can derive all the field
components from the z component of the magnetic field vector.
Omitting the index z, we look for the total field as follows:

H tot
z =

{
H int(p)

z , r p < a p , p = 1, 2
H0

z + Hext
z , r p > a p

(3)

Inside each wire and off them (domains (1) and (2)), we
expand the field in the azimuthal Fourier series in the local polar
coordinates, respectively, so that

H int(p)
z (r , ϕ)=

∞∑
n=−∞

y (p)n Jn(kαr p)e inϕp , r p < a , p = 1, 2,

(4)

Hext
z (r , ϕ)=

∑
p=1,2

∞∑
n=−∞

z(p)n Hn(kr p)e inϕp , r p > a , (5)
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where y (p)n and z(p)n (n = 0,±1,±2, . . ., p = 1, 2) are
unknown coefficients and Hm(·) and Jm(·) are the Hankel
(first kind) and the Bessel functions, respectively. Note that
expressions (4) and (5) satisfy the Helmholtz equation, the
radiation condition, and the local power finiteness condition in
term-wise manner.

The boundary conditions at the wire contours, r p = a ,
0≤ ϕp < 2π (p = 1, 2), are the conditions for a zero-thickness
resistive sheet placed at the interface between the free space and
dielectric—see, e.g., [34] for details. They are two: one tells
that the tangential electric field should be continuous across the
coated wire contour,

E int(p)
ϕp
= E 0

ϕp
+ E ext

ϕp
, (6)

and the other tells that the tangential magnetic field has a jump
proportional to the surface conductivity of graphene,

E int(p)
ϕp
+ E 0

ϕp
+ E ext

ϕp
= 2Z Z0

[
H int(p)

z − H0
z − Hext

z

]
. (7)

Here, the graphene complex-valued surface impedance in the
terahertz range (where the interband conductivity can be safely
neglected [1–3,34]) is

Z0 Z (ω, µc , τ, T)= 1/σintra, (8)

where Z0 =
√
µ0/ε0 is the free-space impedance, Z is the

normalized impedance, and σintra is the intraband surface con-
ductivity, also known as the Drude model. The latter quantity is
found from the Kubo formalism as [34]

σintra =
iq 2

e kB T

π~2
(
ω+ iτ−1

) [ µc

kB T
+ 2 ln

(
1+ e

−
µc

kB T
)]
, (9)

where qe is the electron charge, kB is the Boltzmann constant,
T is the temperature, ~ is the reduced Planck constant, τ is the
electron relaxation time, andµc is the chemical potential.

Our treatment of the formulated above boundary-value
problem follows all steps of the preceding papers [24–26], where
the dimers of bare dielectric and silver wires and silver tubes were
considered, respectively, excited by a modulated electron beam.
The difference is in the boundary condition [Eq. (7)], which
now involves the graphene parameters. Therefore, we omit the
details of the derivations which can be found in [24–26].

On expanding the beam field [Eq. (2)] in terms of the Fourier
series in the local coordinates [10],

H0
z (r1,2, ϕ1,2)=∓Aβe−q(L/2±h)

×

+∞∑
m=−∞

im Jm(kr1,2)

(
1∓ γ

β

)m

e im ϕ1,2 ,

(10)

we substitute the series (4), (5), and (10) into the conditions (6)
and (7) and use the Graf addition theorem for the cylindrical
functions to transfer the expansions from one local coordinate
system to the other, similar to [24–26]. Finally, on introduc-
ing new unknowns, z(p)n = x (p)n wn , wn>0 = n!(2/ka)2n ,
wn<0 = (−1)nwn>0, we derive coupled infinite-matrix
equations (p 6= j = 1, 2),

x (p)m +
Vm

Dm

+∞∑
n=−∞

(±i)n−mwn Hm−n(kL)x ( j )
n =

F (p)
m

Dm
,

m = 0,±1,±2, . . . , (11)

where

Vm = i Z−1 J ′m(ka)J ′m(kαa)+ α J ′m(ka)Jm(kαa)

− Jm(ka)J ′m(kαa), (12)

Dm =wm
[
i Z−1 H ′m(ka)J ′m(kαa)+ αH ′m(ka)Jm(kαa)

− Hm(ka)J ′m(kαa)
]
,

(13)

F (p)
m =−i Z−1 f ′(p)m J ′m(kαa)− f ′(p)m α Jm(kαa)− f (p)m J ′m(kαa),

(14)

f (1,2)m =∓Ae−q(L/2±h)im Jm(ka)(1∓ γ )mβ−m+1,

f ′(1,2)m = ∂ f (1,2)m /∂(ka). (15)

What is important is that, thanks to the rescaling of the
unknowns with the aid of the factors wn , the matrix Eq. (11)
is the Fredholm second-kind operator equation provided that
L > 2a (see the explanations in [24–26]; note that here the
presence of the terms with Z−1 does not spoil this property).
This guarantees the convergence of the numerical solution of
Eq. (11), in the mathematical sense: if each block of Eq. (11) is
truncated to finite order N, then, by taking progressively larger
values of N, one can minimize the error in finding the coeffi-
cients {x (1,2)m }

+N
m=−N , in principle, to machine precision. Note

that without the mentioned rescaling, the matrix equation of
this kind can provide, at best, the accurate values of the first two
to three digits and hence remains impractical in the case of sharp
resonances. This crucial circumstance is frequently overlooked
or neglected, even in the tutorials; see, for instance, [8,35–38].

As we are interested in the modeling of BPM, we have to
compute some DR characteristics, which can be observable in
practical situations. As usual, such characteristics are related to
the field far from the scatterers.

On substituting into Eq. (5) the expressions for the
Hankel functions of the large argument, Hn(x )∼
(2/iπ x )1/2(−i)n exp(i x ), we see that the field at r →∞ is
the cylindrical wave,

H sc
z (r , ϕ)=

(
2

iπkr

)1/2

8(ϕ)e ikr , (16)

where the angular scattering pattern depends on z(1,2)m as

8(ϕ)=

+∞∑
m=−∞

(−i)m Jm(ka)
[
e−

1
2 ikL sin ϕz(1)m + e

1
2 ikL sin ϕz(2)m

]
e imϕ,

(17)
Then the partial scattering cross sections (SCSs) corre-

sponding to the DR power, radiated to the lower and the upper
half-spaces, are, respectively,

σ (1,2)sc =
2

πk A2

±π∫
0

|8(ϕ)|2dϕ. (18)
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Still, the scattering is accompanied with the absorption
because graphene is a lossy material; see Eqs. (8) and (9).
Therefore, we introduce the partial absorption cross sections
(ACSs), found as

σ
(1,2)
abs = πa

ReZ
A2|Z|

∞∑
n=−∞

∣∣∣∣∣ f ′(1,2)n + z(1,2)n H ′n(ka)+ J ′n(ka)
∞∑

m=−∞

(±i)m−nz(2,1)m Hn−m(kL)

∣∣∣∣∣
2

. (19)

Note that the sum of the partial SCS and ACS is the extinc-
tion cross section, σext = σ

(1)
sc + σ

(2)
sc + σ

(1)
abs + σ

(2)
abs . This value

is linked to the DR far-field amplitude [Eq. (17)], computed in
the directions of the so-called complex angles of incidence (see
[25] for details),

σext =−
4

k A2
e−q L/2Re

+∞∑
m=−∞

(−i)mβm Jm(ka)

×

[
e−qh z(1)m

(1+ γ )m
+

e qh z(2)m

(1− γ )m

]
. (20)

This is the optical theorem for the DR, which accompanies
the motion of the modulated beam of charged particles near
obstacles. It can be used for a partial validation of the computed
results. In our analysis, this expression has been satisfied at the
level of machine precision.

3. NATURAL MODES OF GRAPHENE-COVERED
DIELECTRIC WIRES

Each circular dielectric wire covered with graphene is a com-
posite open resonator that supports the natural modes of two
families: dielectric-rod modes, which obtain the features of the
whispering-gallery (WG) modes if the radius a and/or refractive
index a is getting larger, and the plasmon modes of the graphene
cover.

On the stand-alone circular graphene-coated wire, complex
frequencies of all natural modes satisfy independent equations
Dm = 0(m = 0, 1, . . .), where Dm is given by Eq. (13). The
plasmon modes appear in every nonzero azimuthal order,
m = 1, 2, . . . [21]. In [8], they have been found approximately,
after using small-argument asymptotics in Eq. (13). However,
by analogy to a silver wire [39], they can be also viewed as the
natural modes of the traveling-wave resonator formed by the
closed contour of the graphene cover. Then, neglecting the cur-
vature of the graphene layer, the following empiric characteristic
equation can be established:

exp
(
i g plasm2πa

)
= 1, (21)

where g plasm is the complex wavenumber of the plasmon wave
propagating along a flat infinite graphene monolayer located at
the interface between air and dielectric. The roots of this equa-
tion are, obviously, g plasa =m, m = 1, 2, . . . and correspond
to the plasmon modes, Pm . The value of g plasm can be found
analytically; see Eq. (31) in [32],

g 2
plas ≈−k2(1+ ε)

[
Z2(1+ ε)−

1

2
+ O(|Z|−2)

]
. (22)

Taking into account that graphene’s normal-
ized surface impedance Z depends on the frequency
[Eqs. (8) and (9)] and has large value in the tera-
hertz and IR ranges, |Z|2� 1, we conclude that

g plas ≈ k2(ε+ 1)
c
�

(
1+

iτ−1

kc

)
, (23)

where� is a constant that follows from Eq. (9), namely,

�=
q 2

e Z0kB T
π~2

{
µc

kB T
+ 2 ln

[
1+ exp

(
−
µc

kB T

)]}
. (24)

Then, the plasmon mode Pm resonance frequencies are found
approximately as

f P
m ≈

1

2π

[
mc�

a(ε+ 1)

]1/2

. (25)

Note that expression (25) agrees with Eq. (12) of [8]
[here, one has to account for the different systems of units,
the centimeter–gram–second system of units (CGS) in [8]
and SI in our work]. Besides, the Q-factors of the plasmon
modes, in the same approximation (i.e., the absorption
Q-factors) are found to be proportional to the electron
relaxation time,

Q P
m ≈

4ετ

(1+ ε)3/2

(
mc�

a

)1/2

. (26)

As one can see, both resonance frequencies and Q-factors of
the plasmon modes of a graphene-covered circular dielectric
wire grow as a square root of the mode index. Additionally, in
view of Eq. (24), they grow approximately as a square root of the
chemical potential, which, in its turn, is known to be propor-
tional to DC bias. Therefore, higher-order plasmon modes have
a certain advantage, in the higher Q-factors, before the lower-
index modes, including the principal “dipole” mode, P1. The
growth with m is limited, however, by the radiation losses, which
were neglected when deriving Eqs. (25) and (26). The spectral
distance between the adjacent plasmon modes gets smaller with
m and grows as a square root of the chemical potential.

The dielectric-wire modes, perturbed by the presence of
graphene cover, also correspond to the (other) roots of equations
Dm = 0; if |Z| � 1 and m� ka �m/α, they obtain the fea-
tures of the WG modes, such as periodically spaced frequencies
and high Q-factors. However, due to the losses in graphene,
the exponential growth of the Q-factors with m and α is now
limited at the level, determined by the graphene parameters, τ ,
µc and T.

Note also that, in a stand-alone circular resonator, all modes
with m > 1 are doubly degenerate, because sin mϕ and cos mϕ
field dependences are orthogonal and lead to the identical
characteristic equations.
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However, the configuration of twin circular dielectric wires
(Fig. 1), known as dimer, is an even more complicated open
resonator because the modes of individual wires are now opti-
cally coupled. Mathematically, this is visible from the fact that
now the mode equations do not split into the azimuthal orders,
and their natural frequencies are the roots of the determinantal
equation, generated by the whole matrix [Eq. (11)]. Physically,
the optical coupling forces the modes to hybridize; to emphasize
the coupling, the hybrid modes of the dimer are called “super-
modes” [40]. Due to the presence of two lines of symmetry, in
the cross section (which are the x and the y axes), all supermodes
of a circular-wire dimer split into four orthogonal classes accord-
ing to the field symmetry (even dependence) or antisymmetry
(odd dependence) along these axes. They are usually denoted as
EE, EO, OE, and OO classes and can be studied separately after
the separation of corresponding determinantal equations [40].

Therefore, for a dimer of twin circular open resonators,
instead of a single doubly degenerate mode of each wire, a quar-
tet of closely spaced supermodes appears. A numerical study
of the supermodes of twin dielectric disks has shown (see [40])
that each quartet of supermodes forms two even closer spaced
doublets, of the EE and OE modes and the EO and OO modes,
respectively. Recently, the same has been demonstrated for the
supermodes of a dimer of graphene-covered dielectric wires [8].

4. NUMERICAL RESULTS

Figures 2–4 present the results of the calculation of normalized
partial SCS and ACS versus the frequency for twin graphene-
covered dielectric nanowires with radius a = 500 nm and
100 nm, separated by the air gap of the width s = 100 nm. The
relative dielectric constant of the wire material is assumed to
be 2.4. Graphene parameters are T = 300◦K, τ = 0.5 ps, and
several values of the chemical potential are tried. Two beams
with the same relative velocity β = 0.5 are considered: not
shifted from the central-symmetric position, h = 0, and shifted
by h = 40 nm.

The truncation order of the blocks of the matrix
Eq. (12) is selected according to the rule, explained in [41]:
N =max{kαa , ka/β} + 5, which guarantees five correct digits
in the found coefficients. This rule is especially important for
the nonrelativistic beams, β� 1, because the right-hand part

Fig. 2. Normalized partial SCS and ACS versus the frequency
for twin dielectric nanowires covered with graphene with radius
a = 0.5 µm, air gap s = 0.1 µm, chemical potential µc = 0.5 eV, and
beam shifts h = 0 and 40 nm. Dotted vertical lines are the single-wire
plasmon-mode frequencies, predicted by Eq. (25).

Fig. 3. Same as in Fig. 2 for the radius a = 0.1 µm.

Fig. 4. Same as in Fig. 3 for the chemical potentialµc = 1 eV.

coefficients in Eq. (11) behave as O[(ka/2β)|n|] if |n|> ka ,
i.e., drop slowly.

For the selected geometrical and material parameters, single-
wire plasmon-mode resonance frequencies are well predicted by
Eq. (25) (see [32,33]) and get to the IR frequency range. Small
shifts from Eq. (25), for the dimer supermodes, can be also esti-
mated analytically; see [8].

As can be seen in Fig. 2, if the wire radius is a = 500 nm and
graphene’s chemical potential is µc = 0.5 eV, there are a few
lower-frequency plasmon-mode resonances both in the scatter-
ing and in the absorption. However, they are almost the same
both with and without the shift of the beam trajectory from
the central-symmetric position, where it passes through the
air-gap center. This means that the supermodes of the twin-wire
dimer that belong to the classes EE and OE (“dark” if the shift
is absent) remain very weakly excited (see small bumps on the
red side of Eq. (25), unlike their sister-modes of the EO and OO
classes. The latter supermodes shine as one peak (i.e., are still
unresolved) in both cases on the blue side of each frequency,
predicted by Eq. (25).

This unfavorable factor for the BPM design situation can
be overcome if the Q-factors of the plasmon supermodes are
made larger. Equations (26) and (24) show that this can be
achieved by either making the wire radius smaller or increasing
the chemical potential of graphene, i.e., using a larger DC bias.
This effect is accompanied with a frequency shift to higher
values, see Eq. (25); it should still hold for the supermodes of
each symmetry class.
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Fig. 5. In-resonance near magnetic field magnitude (left) and phase (right) patterns of twin dielectric nanowires covered with graphene with radius
a = 0.1 µm, the chemical potentialµc = 1 eV, beam shift h = 40 nm, and air gap width s = 0.1 µm. (a) 30.16 THz; (b) 32.3 THz; (c) 43.77 THz;
(d) 44.77 THz.
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While the fabrication of thinner wires seems to be realis-
tic, the largest reported value so far of graphene’s chemical
potential is only 1 eV (still, larger values can become realistic
in future). Indeed, the computations made for a = 100 nm
with µc = 0.5 eV and 1 eV (see the plots in Fig. 3 and Fig. 4,
respectively), reveal the same but sharper resonances on the
still unresolved mode doublets EO-OO, both in SCS and ACS.
However, now a shift of the beam trajectory triggers the exci-
tation of new resonances on the unresolved mode doublets
EE-OE, which remained dark if the beam was not shifted. Such
resonances are associated with the “supermodes” of twin wires,
whose symmetry is orthogonal to the not-shifted beam field
[Eq. (2)]. This is exactly the same effect that we are looking for
to be used in BPM design. Note that if a sizably larger, say, 10 eV,
chemical potential could be realized, then the mentioned new
peaks become impressively larger and sharper (not shown here).

An earlier similar effect was found in the nanosize models
of BPMs built on twin high-refractive-index dielectric wires
[24] and twin silver nanotubes [26]. Note that in [24,26] the
range corresponded to the visible-light frequencies, while what
we discuss here takes place at one order lower IR frequencies.
Of course, in the circular dielectric wires, a modulated beam
of particles can excite the resonances on the WG modes as well
(slightly perturbed by the presence of graphene cover); how-
ever, for the wire radius taken here they become visible at the
frequencies well above 100 THz.

The near fields, computed in the peaks of SCS for the case of
the shifted beam trajectory, are shown in Fig. 5. Here, the left
panel in each row corresponds to the field magnitude pattern
while the right one corresponds to the field phase pattern. These
patterns demonstrate the expected number of the field varia-
tions around the wires and support our interpretation of the
plasmon-mode resonances as those associated with still unre-
solved supermode pairs of the y -even (EE and OE) and y -odd
(EO and OO) classes of symmetry.

5. CONCLUSION

We have analyzed, using a dedicated numerical code based on
the reduction of the diffraction-radiation problem to the matrix
equation having guaranteed convergence, a 2D model of BPM
designed of twin graphene-coated circular dielectric nanowires.
This analysis has demonstrated that such a dimer can serve as an
infrared-range sensor of the beam shift from prescribed trajec-
tory. If such a shift appears, then new resonances on the formerly
dark supermodes start shining in the spectral dependence of the
DR. To have these new peaks well resolved, the graphene chemi-
cal potential should be rather high, around or above 0.5 eV. Such
high values can be achieved with appropriate DC biasing.
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