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Abstract
The visible-range diffraction radiation of harmonically modulated electron beam, which moves
between twin circular silver nanowires, is considered. The electromagnetic field of such a two-
dimensional beam is a surface wave propagating along its trajectory with the phase velocity
equal to the beam velocity. This wave induces currents on the nanowires and hence radiation
occurs even if the beam does not touch the wires. If the wires are tuned to a resonance, the
radiated power displays a peak proportional to the resonant mode Q-factor. Sub-wavelength in
radius silver nanowires are famous as nanoresonators due to the localized surface-plasmon
modes. In our analysis, we use the field expansions in the azimuthal Fourier series and the
addition theorems for the cylindrical functions. This enables us to reduce the wave scattering
problem to a Fredholm second kind infinite-matrix equation that guarantees convergence of
numerical solutions. Truncating this matrix, we compute the near and far field patterns of the
wires as optically coupled plasmonic resonators and analyze dependence of the far-field spectral
characteristics on the wavelength and electron beam parameters.

Keywords: optical diffraction radiation, silver nanowires, surface wave, plasmon resonance, total
scattering cross-section, absorption cross-section

(Some figures may appear in colour only in the online journal)

1. Introduction

The effect of the visible-light radiation from the electron beams
passing in vacuum over one-periodic relief gratings, across
their grooves, is known since the 1950s when it was predicted
and then verified experimentally [1]; later it was studied also in
[2–4] and other publications, with applications mainly in the
vacuum electronics. Today this effect is considered to be a
particular case of more broadly defined phenomenon: the
radiation that occurs if the charged particles or their beams
excite nearby material objects without touching them, in var-
ious frequency regions. Such an effect is called diffraction
radiation (DR) [5–14], in order to distinguish it from the
transient radiation appearing when a particle crosses a

boundary between different materials. Physically, the sources
of DR are the surface and polarization currents induced on the
scatterers placed in proximity to the beam trajectory.

Microwave-range DR is already in use as an attractive
technique for non-invasive beam diagnostics, i.e. remote
sensing of the beam position and velocity [10–14]. Such
sensors are usually called beam position monitors (BPM).
Today, BPM design can be extended to the optical range
because emergence and rapid development of nanotechnology
opens the way to fabricate ensembles of nanoscale optical
scatterers with controlled shape and placement [15–17]. As
nanosize components introduce negligible distortion to the
beam, its velocity and trajectory can be assumed fixed. Then
the analysis of DR effect can be done in the framework of
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classical electromagnetic-wave scattering theory, i.e. as the
scattering of the given wave by the scatterers of known
shapes and material properties.

Performance of BPM greatly depends on its configura-
tion, and it is quite natural that normally it uses a resonance to
enhance the DR effect and, as a result, the BPM sensitivity.
Nanosize scatterers are deeply sub-wavelength even in the
visible range. There are two basic mechanisms to achieve
electromagnetic-wave resonance at nanoscale. One implies
the use of the lowest modes of high refractive index dielectric
resonators and exploits the fact that the wavelength in mat-
erial scales down as the inverse value of that index. Still, as
the realistic values of refractive index are in the dozens and
small hundreds, this mechanism offers the nanoscale cavities,
which are rather sub-wavelength, i.e. still comparable to the
free-space optical wavelength.

Recently, the work [18] presented a study of the pair of twin
circular dielectric sub-wavelength wires made of appreciably
high refractive index material as a sensor of the deviation of the
modulated electron beam trajectory from the central position,
between the wires. As was shown, non-zero shift of the beam is
accompanied with appearance of additional sharp peaks in the
total scattering cross-section (TSCS) spectra. The natural modes
of such configurations are best understood as ‘supermodes’ built
on the bonding and anti-bonding combinations of the modes of
each wire. Then the additional peaks are associated with the
bonding supermodes of such a photonic molecule, formerly
‘dark’ i.e. not excited by a symmetrically flowing beam of
particles. The Q-factors of these modes can be high if the
material of wires has small losses and, moreover, these Q-factors
grow exponentially with refractive index and the wire radius.

The other mechanism to achieve a resonance at the
nanoscale is associated with the use of the localized surface
plasmon (LSP) modes of scatterers made of noble metals such
as gold and silver. For the metal wires, LSP mode fields are
H-polarized. If a sub-wavelength circular wire is placed into
the free space, its LSP modes are clustered near to the
wavelength λ where the following approximate quasi-static
equation is held: ( )e l = -Re 1, with ( )e l standing for the
complex-valued dielectric function of metal [17, 19–22]. As
one can see, this equation does not involve the wire radius,
which can be formally arbitrarily small. The wavelengths,
which satisfy this equation, are in the ultra-violet for silver
and in the green for gold. However, even noble metals are
sizably lossy in the visible range and hence the LSP Q-factors
are quite low [17].

In the present work, we examine the configuration of
twin circular silver wire as shown on figure 1. By the analogy
with the photonic molecules made of dielectric particles, it
can be viewed as a photonic plasmonic molecule with two-
fold symmetry. Note that the plane-wave scattering from a
twin-wire plasmonic scatterer was extensively studied in the
past—see, for instance, [23–25]. Our goal is to analyze the
visible-light DR from such a scatterer and to check how
sensitive it is to a shift of the beam trajectory from the central-
symmetric position and to a change of the beam velocity. This
includes a detailed analysis of how the resonances on the
coupled plasmonic modes of the twin silver wires are excited

by the modulated electron beam. Our work builds up on the
preceding conference papers [26, 27], which have been con-
siderably deepened and refined.

In section 2, we formulate the DR problem. Section 3
presents a brief review of the basic equations. Section 4
contains a summary of the equations for the scattering and
absorption characteristics. In section 5, we explain how we
characterize the dielectric function of silver. Numerical results
are presented and discussed in section 6. The conclusions are
summarized in section 7.

2. Problem formulation

Consider two identical circular silver nanowires (marked 1
and 2 in figure 1) separated by the distance L between their
axes, with the same radius a and complex refractive index

( )a l e= . We assume that the gap between the wires is
= -s L a2 and the Cartesian and the local, ( )jr , ,1,2 1,2 and

the global, ( )jr, , polar coordinates are chosen as shown in
figure 1.

Consider now a one-dimensional (i.e. flat) electron beam
moving along a straight trajectory at the distance h>s/2
from the x-axis, with a fixed velocity b=v c (b  1). The
charge density function, if modulated in time in harmonic
manner, can be presented as

( ) [ ( )] ( )/r r d b w= - -y h i kx texp , 10

where (·)d is the Dirac delta function, w and r0 are the fre-
quency and the amplitude of the beam modulation, /w=k c
is the free-space wavenumber, and c is the light velocity. In
practical conditions, harmonic modulation of the electron
beam can be arranged by its preliminary bunching in periodic
waveguide or by using the direct laser illumination [11].

Figure 1. Cross-sectional geometry of a plasmonic photonic
molecule made of two identical circular silver nanowires excited by
a modulated electron beam moving between them.
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As shown in [2], the electromagnetic field of the beam
(1) is an H-polarized slow wave compressed to the beam
trajectory. Its magnetic field has a finite jump at the trajectory

( ) ( ) ( )∣ ∣ ( )/b= - b- -H x y A y h e e, sign , 2z
q y h i k x0

where /g b=q k , ( ) /g b= -1 ,2 1 2 function (·) = sign 1 is
the sign of the expression in the brackets, time dependence is
omitted, and A is a known constant. Note that the field (2)
decays exponentially in the normal to the trajectory direction,
and the smaller b, the greater the field confinement at the
trajectory. Besides, (2) has a finite jump at the beam trajectory
that corresponds to the electric current.

In the presence of silver wires, the total magnetic field is
different from (2). Neglecting the particles deceleration
because of the loss of energy (this is called the given-current
model), we can assume that the field (2) is fixed and consider
it as the incident field. Then, to find the total field, we have to
solve a 2D boundary-value wave-scattering problem. It
involves the Helmholtz equation with coefficient k2 or ak2 2

outside and inside the wires, respectively, the penetrable-
boundary conditions at the wire contours (where the tangen-
tial field components, Hz and jE ,1,2 must be continuous), the
Sommerfeld radiation condition at infinity, and the condition
of local power finiteness. These conditions guarantee the
solution uniqueness.

3. Basic equations

Inside each wire, we expand the field in terms of the Fourier
series in the local polar coordinate, j =i, 1, 2,i

( )

( ) ( ) ( )( ) ( )åj j a= = <j

=-¥

+¥

3

H r H r y J k r e r a, , , ,tot i
i i

m
m

i
m i

im
ii

where we have omitted the sub-index z. In the external
domain, the total field can be presented as the sum of the
incident field and the contributions from the twin scatterers

( )= +H H H , 4tot ext0

( ) ( ) ( )( ) ( )å åj = >j

= =-¥

¥

H r z H kr e r a, , . 5ext

i m
m
i

m i
im

i
1,2

1
i

One of the boundary conditions requests he total field
function Htot to be continuous across each wire boundaries,

=r a.1,2 On introducing the complex angles of incidence of
the wave (2) above and below the beam trajectory, y ,1,2 such
that

( )/ /y b y g b= = cos 1 , sin i , 61,2 1,2

and using the Jacobi–Anger formula in the complex domain,
we can expand the incident field in terms of the azimuth series
in the local coordinates of each wire as in [5]

( )

( )

( )

( )

( )

⎛
⎝⎜

⎞
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





/

/ å

j b

b

g
b

=

=

´

y

j

- 

- 

=-¥

+¥

H r A e e

A e i J kr

e

,

1
. 7

q L h ikr

q L h

m

m
m

m
im

0
1,2 1,2

2 cos

2
1,2

1,2 1,2

1,2

Then, substituting (4), (5), and (7) into the boundary
condition for Htot and using the orthogonality of exponents,
we obtain the following connection between the unknown
expansion coefficients:

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )å

a =

+ +
=-¥

+¥
-

-

y J k a z H ka

i z J ka H kL f , 8

m n m m

n

n m
n n m n m

1,2 1,2

2,1 1,2

where (·)Jm and (·)Hm are the Bessel and the first-kind Hankel
functions, respectively, the upper index, (1), of the latter is
omitted for brevity, and

( )( ) ( )( ) ( ) /b g b= -  -f A e i J ka 1 . 9m
q L h m

m
m m1,2 2

Expression (8) can be used to eliminate the coefficients
( )ym
1,2 from the other boundary condition, which requires the

continuity of the function ( )/ /e= ¶ ¶jE Z ik H rtot tot
1,2 0 1,2 across

each wire boundary (where ( )/ /m e=Z0 0 0
1 2 is the free-space

impedance). Then, on introducing new unknowns ˜( ) =zm
1,2

( )z w ,m m
1,2 where !( )/=w m ka2 ,m

m and doing some algebra,
we arrive at the following coupled infinite-matrix equations
for the latter coefficients:

˜ ˜ ( )( ) ( ) ( ) ( )å+ = =   ¼
=-¥

+¥

z A z B m, 0, 1, 2, , 10m
i

n
mn
ij

n
j

m
i

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )= -
-

-A i J ka V H kL P , 11mn
ij n m

n m
i

m n m
i 1

[ ( ) ( ) ( ) ( )]( )
( )

( ) ( ) ( ) ( )a a a= - ¢ - ¢- -B f ka J k a k J k a f ka P ,

12
m
i

m
i

m i m m
i

m
i1 1

( ) ( ) ( ) ( ) ( )a a a= ¢ - ¢V J ka J k a J ka J k a , 13m m m m m

[ ( ) ( ) ( ) ( )] ( )a a a= ¢ - ¢P w H ka J k a H ka J k a , 14m m m m m m

where = ¹i j i j, 1, 2, , and the prime stands for the dif-
ferentiation in argument.

This is the same equation set as derived earlier in [18] in
the analysis of DR in the presence of twin circular wires made
of high refractive index dielectric material. Note that, thanks
to the introduction of the scaled coefficients ˜( )z ,m

1,2 the matrix
operator in (10) is compact (similar scaling was also used in
[28–31] for the scattering by other finite and infinite collec-
tions of circular wires). This scaling is crucially important as
it is only in such case that the Fredholm theorems guarantee
that numerical solution of (10), truncated to finite order M,
converges to the exact solution as  ¥M .

The following empirical rule has been found: to obtain
five effective digits in the near field, one has to take M
a +k a 5 (and more if the gap <s a0.01 ). We use this rule
when computing the results presented in the next section.
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4. Scattering and absorption characteristics

Far from the wires, at  ¥r , the scattered field
behaves asymptotically as a cylindrical wave, ( )j =H r,ext

( ) ( ) ( )/ /p jFi kr ikr2 exp ,1 2 that can be derived from (5) with
the aid of the large-argument asymptotic expressions for the
Hankel functions. Here, the far-field angular pattern is a
function of the coefficients ( )z ,m

1,2

( )( ) ( ) ( ) ( )

( ) ( ) ˜ ( )
( )

( )



å

j j j j j

j

F = F + F F =

´ -
=-¥

+¥

ikL

i J ka z im

, exp sin

exp ,

15m

m
m m

1 2 1,2
1

2

1,2

Note that the series in (15) converge exponentially as
soon as |m| becomes larger than ka. In the case of DR ana-
lysis, the scatterers can be located in either of two half-spaces.
We assume that the beam travels away from the wires, that is,
h<s/2. Then, it is convenient to present the TSCS as a sum
of two partial SCS, into the lower and the upper half-spaces,
respectively

( )( ) ( )s s s= + . 16sc sc sc
1 2

They are found from the integration of the normal
component of the time-averaged Poynting vector over the
corresponding semi-circles of large radius

∣ ( )∣ ( )( )


òs
p

j j= F
p

kA
d

2
. 17sc

1,2
2 0

2

As the silver is lossy, the incident field is not only
scattered but also absorbed in the wires. The figure of merit of
this effect is the total absorption cross-section (TACS). The
TACS can be found from the integration of the electric-field
power over the wire cross-section areas or, equivalently, from
the integration of the normal component of the time-averaged
Poynting vector over the contours of the wires. For metals,
the former way involves differentiation of the dielectric
function, ( ) ( )e l a l= ,2 in wavelength. As we do not want to
use the Drude approximation for the dielectric function of
silver and, instead, use experimental data of [32], this dif-
ferentiation can be done only numerically. Therefore, the
latter way is more suitable as it avoids such an operation. The
corresponding expressions take the following form:

( )( ) ( )s s s= + , 18abs abs abs
1 2

Figure 2. Bulk complex relative permittivity function of silver versus the wavelength in the optical range (a), and its zoom in a gray-boundary
ultra-violet domain (b).

Figure 3.Normalized TSCS (a) and TACS (b) of two identical silver nanowires versus the wavelength, for the electron beam with the relative
velocity β=0.9 flowing along the x-axis (h=0).
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∣ ∣
∣ ∣ [ ( ) ( )] ( )( ) ( )ås

p
a

a a a= ¢
=-¥

¥a

A
y J k a J k a

2
Im , 19abs

m
m m m

1,2
2 2

1,2 2 *

where * means the complex conjugate.
The sum s s+sc abs is the extinction cross-section, s .ext In

the plane wave scattering, this quantity is linked to the far-
field scattering pattern magnitude in the forward direction by
the expression known as optical theorem. In our case, we
have the surface wave (2) as the incident field. Still, a similar
expression can be derived using the complex angles of inci-
dence y1,2 above and below the beam trajectory, as defined in
(6), and substituting them into the complex Poynting theorem.
Extracting the real part, we find that

[ ( ) ( )] ( )s s s y y= + = - F + F
kA

4
Re 20ext sc abs 2 1 1 2 2

or, with account of (15)

( ) ( )

( )

( )
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-
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z e

4
Re

1

1
. 21

sc abs
qL

m

m
n n

qh
m

n
qh

m

2
2

1

2

The obtained expression is the optical theorem for DR
excited by the beam (1) flowing between the wires of plas-
monic PM. Fulfillment of (21) provides partial validation of
the solution correctness, although full validation needs the
verification of the fulfillment of the boundary conditions.

As we have verified, the error in the optical theorem
oscillates at the level of machine precision and the error in the
boundary conditions is the same level as for the solution of
(10), controlled by the matrix truncation order M. Addition-
ally, if we set the material of wire #2 to be the free space,
then the computed cross-sections coincide with their values
for a stand-alone silver wire, found in analytical form [17].

In the computations, we assume, without a loss of gen-
erality, that the constant A=1 Am−1.

5. Dielectric function of silver

The Johnson and Christy experimental data [26] are adopted to
incorporate the wavelength-dependence optical response of bulk
silver, ( )e l , interpolated in the same way as in [17]. The spectra
of the real and imaginary parts of that function in the ultra-violet
range are shown in figure 2(a), and in figure 2(b), the same is
shown in the whole visible-light range. Note that the Drude
formula, being a reasonable approximation at longer waves, fails
to provide accurate characterization in the ultra-violet.

Figure 4. Normalized far-field scattering patterns of the twin silver nanowires for the beam flowing along the x-axis (h=0) with the relative
velocity β=0.9. The wire radius is as indicated, and the wavelength is λ=337 nm (a), 332 nm (b), 354 nm (c), 332 nm (d), 354 nm (e), and
382 nm (f).
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As one can see, there are two remarkable wavelengths,
both laying in the ultra-violet. One is around 306 nm where

e =Re 0.942 that is quite close to +1. This means that silver
is optically well-transparent at this wavelength although the
losses remain significant as e =Im 1.97. Note that this effect
of ‘quasi-invisibility’ cannot be reproduced with the Drude
formula for the dielectric function of silver. This justifies our
choice of the Johnson and Christy data in the analysis of
silver scatterers of the visible light.

The other important wavelength value is around 337.7 nm,
where e = -Re 1. This is the approximate quasi-static ‘text-
book’ value for the collective resonance on the LSP modes of a
single circular metal wire in the free space [14, 16–19]. It is
valid if the losses can be neglected, e =Im 0. Although for
silver e =Im 0.3 at that wavelength, it predicts the peak of

absorbance and scattering within the 5% accuracy if the silver
wire is thinner than 10 nm in radius.

6. Numerical results

Figure 3 demonstrates the dependences of the normalized by
4a TSCS and TACS (sum of (17) and (19), respectively) on
the electron-beam modulation wavelength in the visible
range, for twin silver nanowires with sub-wavelength radius
values a=10, 50, and 200 nm, separated by the gap of
s=20 nm between them. The beam flows along the x-axis
(i.e. symmetrically, so that the shift is h=0) and the beam
velocity is β=0.9 that corresponds to so-called relativis-
tic beam.

The plots of TSCS show one, if a=10 nm, or a few, if a
is lager, peaks. This peak is known as collective resonance on
the LSP modes of thin silver twin nanowires. In [14], it was
already demonstrated that the plasmon resonance on a stand-
alone metal wire can be excited not only by an H-polarized
plane wave as in [28–32] but also by a modulated elec-
tron beam.

The photonic-plasmonic molecule built of twin circular
metal nanowires is a more complicated open plasmonic
resonator. Its natural modes have much in common with the
modes of the photonic molecule built of two circular di-
electric disks or wires, studied in [18, 28]. They form so-
called ‘plasmonic supermodes’ built on optically coupled LSP
modes of each wire. In the case of twin wires these super-
modes make quartets where each of them belongs to one of
four independent classes of symmetry of the pair [18, 28].
They can be, therefore, denoted as P P P P, , , ,m

EE
m
OE

m
EO

m
OO

where E(O) corresponds to the even (odd) dependence on x
and y.

Note that similarly to the plane-wave scattering from a
single circular silver wire [22], for the thicker wires the LSP
peak in the scattering cross-section splits to several ones,
where the most red-shifted peak corresponds to the

Figure 5. Normalized partial SCS of twin silver nanowires with radius 10 nm versus the wavelength in the visible range, for several values of
the electron velocity β. The beam flows above the x-axis at the distance h=5 nm.

Figure 6. Normalized near magnetic field patterns of the 10 nm in
radius twin silver nanowires excited with the electron beam having
the velocity β=0.3, in the plasmon resonance at λ=337 nm
(a) and in the ‘quasi-invisibility’ case (minimum scattering) at
λ=330 nm (b). The beam flows above the x-axis: h=5 nm.
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supermode built on the P1 mode of each wire, and others
correspond to the supermodes on the higher-order LSP
modes. In view of the symmetry, partial SCS are each equal
to one-half of TSCS.

In contrast, the plots of TACS of a deeply sub-wave-
length silver wire demonstrate only one common peak,
slightly blue-shifted for the thicker wires from the quasi-static
value of 337 nm. The higher-order LSP resonances show up
as gentle ‘shoulders’ on the red side of that peak.

The effect of ‘quasi-invisibility’ is present on the plots of
TSCS for both thin and thick silver wires (note that this
phenomenon has no relation to ‘Fano-shape’ resonances in
the other scattering analyses). The associated minimum is
especially deep for a deeply sub-wavelength wire. On the
plots of TACS, there is no similar minimum due to con-
siderable losses in the bulk silver.

In figure 4, we present the normalized far-field scattering
patterns at the wavelengths of the peaks on the TSCS plots of
figure 3(a). As the beam flows strictly in the middle between
the wires, the angular patterns have zeros along the x-axis.
The number of lobes in the far zone corresponds to the mode
index m.

Now, to clarify the effect of the shift of the beam tra-
jectory on the scattering and absorption, we show the visible-
range spectra of the partial TCS and ACS for several values of
the silver wire radius a and the gap of 20 nm however
assuming that h=5 nm. To see what changes if the beam
velocity β varies, we select it as 0.3, 0.5 and 0.9.

The plots in figure 5(a) demonstrate the dependences of
the normalized by 4a partial SCS on the modulation wave-
length in the visible range, for nanowires with deeply sub-
wavelength radius of a=10 nm. As one can see, for all

Figure 7. The same as in figure 2 however for the wire radius 50 nm.

Figure 8. Normalized near magnetic field patterns of the 50 nm in radius twin silver nanowires at λ=332 nm for the electron beam velocity
β=0.9 (a) and β=0.3 (b); the beam flows above the x-axis (h=5 nm).
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values of β, the plots of partial SCS, ( )( )s lsc
1 and ( )( )s l ,sc

2 are
very close to each other. They show one distinctive peak at
λ=337 nm that does not change its place noticeably if the
beam shift h gets larger. The effect of the ‘quasi-invisibility’
is also well visible as a deep minimum, slightly red-shifted
from the value of 306 nm where the bulk silver dielectric
function is closest to +1.

In the absorption (figure 5(b)), the LSP peak appears at a
slightly blue-shifted position between 330 and 335 nm,
depending on the velocity β and shift value h. As already
mentioned, there is no ‘invisibility’ effect in the absorption as
the silver is heavily lossy in the deep ultra-violet. Note that
the partial TCSs of such thin nanowires are practically the
same for any beam velocity β. The plots of ACS demonstrate
a similar independence of β for relativistic beams, however, if
β becomes smaller, the difference in favor of the nearer wire
becomes visible.

Color maps in figure 6(a) demonstrate in-resonance pat-
terns of the near magnetic field for such deeply sub-wave-
length wires. Figure 6(a) corresponds to the peak in the
scattering. One can conclude that the near field is dominated
by the contribution of two nearly degenerate supermodes,
PEO

1 and P .OO
1 The field in figure 6(b) corresponds to the

‘scattering invisibility’ wavelength. It shows, indeed, that in
this case the beam of particles does not see the silver nano-
wires as its field is very close to the field (2) in the free space.

For the better insight into the physics of DR, the plots in
figure 7 present the spectra of the partial SCS and ACS for the
beam-excited twin silver nanowires of larger radius, 50 nm.

Unlike the thinner wires, these configurations show,
besides of the main peak, several smaller ones at the longer
wavelengths. They are well resolved on the SCS plots and
correspond to the EO supermodes built on the higher-order
LSP modes Pm of each circular wire (see [17, 21]). This is

Figure 9. The same as in figure 5 however at λ=354 nm (i.e. at the shoulder on the TSCS plots) for the beam velocity β=0.9 (a) and
β=0.3 (b); the beam shift is h=5 nm.

Figure 10. The same as in figures 2 and 4, however for the wire radius 200 nm.
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clearly visible in the near-field patterns corresponding to these
additional peaks, shown in figures 8 and 9. Note that the field
asymmetry is clearly visible only in figure 8(b) and especially
in figure 9(b), where b = 0.3, and if b = 0.9, then it is
alleviated by the slower decay of the incident field away from
the trajectory. The plots in figure 10 correspond to even larger
wires of a = 200 nm. The patterns in figures 11 and 12 show
that the near field is dominated by the LSP supermode mode
Pm

EO with m=5 (a) and m=4 (b). The interpretation is also
supported by the far-field angular scattering patterns, pre-
sented in figure 4. The plots of partial cross-sections show
that, unlike thinner wires, the thicker ones demonstrate that
nearer to the beam wire is both a stronger scatterer and a
stronger absorber unless the beam is relativistic (that is if
b  1), although for the 200 nm wire the near field patterns
are almost symmetric.

In order to obtain clearer vision of the effect of asym-
metry in the light scattering and absorption, which appears in
the studied configuration if the beam trajectory is shifted from
the central position, we have computed the spectra of the
scattering and extinction asymmetry factor. The latter quan-
tities are introduced in the following manner:

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )x
s s
s s

x
s s
s s

=
-
+

=
-
+

, . 22sc
sc sc

sc sc
ext

ext ext

ext ext

2 1

2 1

2 1

2 1

The results of our calculations are presented in figure 13.
As one can see, a shift of the beam trajectory towards the

upper wire results in a generally stronger scattering into the
upper halfspace and a larger extinction in this halfspace. This
is expected behavior in view of the exponential decay of the
beam field (2) in the normal to the trajectory direction. Still
the dependence of the asymmetry factors on the shift distance

Figure 11.Near magnetic field patterns of the 200 nm in radius twin silver nanowires at λ=332 nm (the most ‘violet’ peak), for the electron
beam velocity β=0.9 (a) and β=0.3 (b); the beam flows above the x-axis (h=5 nm).

Figure 12. The same as in figure 8 however in the smaller peaks of TSCS in figure 7, that is at λ=354 nm (a) and λ=382 nm (b). The
electron beam is relativistic, β=0.9, and flows above the x-axis, h=5 nm.
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is a complicated function of various parameters including the
frequency.

7. Conclusions

The electromagnetic field of a modulated electron beam is a
slow wave propagating along the beam trajectory, with
exponential decay away from it. This wave induces surface
and polarization currents on the neighboring obstacles that
radiate into the outer space even if the beam does not touch
them. We have studied, for the first time to the best of our
knowledge, how the visible-light DR is emitted by a beam,
moving between a pair of identical circular silver nanowires.
As we have found, they behave as optically coupled plas-
monic open resonators. Because of the losses in silver, their
LSP supermodes (that is, hybrid modes) have rather low
Q-factors however are still able to enhance the DR at the
corresponding wavelengths. If the beam trajectory shifts away
from the central (symmetrical) position between the silver
wires, then the near field pattern also loses symmetry. This is
better visible if the wire radius is truly sub-wavelength and
the beam is non-relativistic. Still, unlike a pair of high
refractive index dielectric nanowires [18], the low values of

LSP mode Q-factors and their clustering near to the same
wavelength show that the solid circular metal wires are not
the optimum shape for the applications related to the optical
beam-position monitors. Therefore, additional studies are
needed to explore the opportunities of configurations, which
support LSP resonances with higher Q-factors, for instance,
made of a pair of hollow thin-wall metal nanotubes.
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